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Abstract—Centrality measures are widely used to map each node
to its importance in a network. For many practical applications,
vital nodes bearing high centrality scores have superior positions
over other nodes. To benefit from the positive impact of becoming
a vital node, the problem of improving the centrality of the
target node has attracted increasing attention. Many existing
studies attack this problem by directly increasing the centrality
score of the target node on the premise of knowing the network
structure. However, these methods suffer from privacy issues due
to their dependence on the network structure and may lose their
effectiveness because other nodes can simultaneously increase the
scores. Therefore, in this paper, we explore the following question:
given a black-box network whose structure is unknown, is it
possible to improve the centrality ranking (rather than the score)
of a target node by implementing certain strategies? We provide
an affirmative answer to this question. First, to avoid relying on
the network structure for promotion, we propose strategies that
freeze the original graph while appending nodes and edges just
around the target node. Second, to guide strategies for effectively
boosting centrality, we devise two principles that provide the
target node with either the maximum gain or the minimum loss
of centrality scores over other nodes. We prove that a strategy
meeting the proposed principles is guaranteed to upgrade the target
node’s ranking. Extensive experiments were conducted to verify the
effectiveness of the proposed strategies on black-box networks.

I. INTRODUCTION

Networks have been extensively applied to model entities and
their relations in the real world [1]. As one of the essential
aspects of network analysis, centrality reveals the basic prop-
erties of a network [2]: given a graph1 G(V,E), a centrality
measure assigns a score to every node v ∈ V to indicate
the relative importance of this node [3]. Some commonly used
centrality measures are degree centrality, closeness centrality,
and betweenness centrality (see [4] and references therein).

As a tool for mapping each node to its corresponding sig-
nificance, centrality measures are exploited to identify vital
nodes on a network [4]. Vital node identification has many
applications on networks [4–6], with examples ranging from
advertisements on social networks [7] to outbreak control on
epidemic networks [8]. In these applications, vital nodes with
relatively high centrality scores have superior positions over
other nodes on a network [9, 10].
Motivating Examples. This paper studies the issue of promoting
a target node’s centrality on a network to benefit from the
positive impact of becoming a vital node (for fun and profit). The
motivating examples for centrality promotion are listed below.

Min Gao is the corresponding author.
1We use the terms “network” and “graph” interchangeably.

• Closeness Promotion. The closeness of a node is the reciprocal
of the sum of the distances from this node to all nodes
in the graph [5]. In co-authorship networks, authors with
high closeness are likely to receive more citations [9, 11].
Moreover, research results published by authors with high
closeness are prone to disseminate widely in the network [12].
Therefore, an author would be pleased to adopt promotion
strategies to increase closeness, thereby having more research
impact than colleagues with lower closeness.

• Betweenness Promotion. The betweenness of a node is the
fraction of the shortest paths between node pairs that pass
through this node [13]. In social networks, users with high
betweenness are influential since their posted information
(e.g., tweets) diffuses rapidly and widely [14]. Users with high
betweenness can thus be requested to help spread information
of others for wide dissemination. Hence, a user can employ
promotion strategies to increase the betweenness to become
more influential.

• Coreness Promotion. The coreness of a node is the largest
integer k such that this node is contained in a subgraph
in which each node has a degree not less than k [15]. In
information networks, nodes with relatively high coreness
act as blockers to prevent rumors from spreading throughout
the system [16]. Consequently, a user can adopt promotion
strategies to increase coreness for better control of rumor
spreading than users with relatively lower coreness.

• Eccentricity Promotion. The eccentricity of a node is the
reciprocal of the maximum distance from this node to all the
nodes [6]. In sport team networks, compared with players with
average eccentricity, players with high eccentricity can easily
affect other teammates [17]. Accordingly, a player can adopt
promotion strategies to increase eccentricity for a positive
influence on other teammates’ activities.

Existing Solutions. Current research normally inserts additional
edges into the original graph to improve the centrality score of
a target node, provided that the network topology is known.
Examples can be found in [18] (for betweenness), [19] (for
coreness), [9] (for closeness), and [20] (for eccentricity), etc.
These studies are formed as follows: given a graph G(V,E), a
target node t ∈ V , and a budget b, select b edges from the non-
existing edges Ê = {V 2\E}, thereby maximizing the centrality
improvement of t. Due to the hardness of these problems, many
researchers resort to greedy (approximation) algorithms to obtain
suboptimal solutions for centrality promotion [18, 19, 21].
Motivations. Greedy algorithms are valuable to network own-
ers [22] who have a complete view of the network structure to



make a greedy decision for centrality improvement. In contrast,
for privacy reasons [23, 24], a real-world network is more likely
to be a black box for network users [22] — users have no access
to the entire network structure. When the network structure is
inaccessible, greedy algorithms are not candidates for users who
want to increase centrality.

Furthermore, existing greedy algorithms normally improve a
target node’s centrality score2 and are applicable when the score
is critical [9]. For example, an increasing betweenness score for
an airport always corresponds to an increasing volume of traffic
and customers [25]. However, there are contexts where a high
centrality ranking is desirable (see [4, 18] and our motivating
examples). In this case, an increasing score does not necessarily
mean an improved ranking [18] — other nodes can also enlarge
their scores.
Challenges. To overcome the limitations of existing solutions,
we manipulate black-box networks (networks with an unknown
structure) to promote a target node’s centrality ranking. Specifi-
cally, we have two goals: i) we do not rely on the knowledge of
the network structure to make an improvement (thus it is feasible
for network users); ii) we increase the centrality ranking (rather
than the centrality score) of the target node.

These appealing goals are not easily achieved because we
need to overcome the corresponding challenges: i) How to
design a practical promotion strategy when the network structure
is unknown? ii) How to ensure the promotion strategy is valid
for a target node to increase its centrality ranking?
Our Solution. To address the first challenge, we propose promo-
tion strategies that only append additional nodes/edges around
the target node. These strategies negate the need to change (and
refer to) the structure within the original graph, thus making
promotion on black-box networks feasible. To solve the second
challenge, we update the centrality scores of nodes to a different
extent after promotion (the target node has the maximum gain
or the minimum loss over all other nodes) to potentially improve
the centrality ranking of the target node. Non-trivial theoretical
analysis is undertaken to show that this simple yet elegant idea
works well for centrality promotion.
Contributions. Our contributions are summarized as follows.
• Formalization of the centrality promotion problem on black-

box networks (Section III). We discard dependency on the
network structure for promotion. In addition, to ensure valid
promotion, we aim to increase the ranking instead of the score
of the target node.

• Practically usable promotion strategies (Section IV). We
incorporate various promotion strategies into a general model,
where only additional nodes and edges around the target
node are inserted. Based on the structure between the inserted
nodes, three strategies are proposed, i.e., multi-point, double-
line, and single-clique strategies.

• Theoretically effective promotion principles (Section V). We
propose the maximum gain (resp. the minimum loss) princi-
ple that provides the target node with the maximum score gain
(resp. the minimum score loss) over other nodes. Then, for
a specific centrality measure, the aforementioned principles
guide the selection of an effective strategy: we verify that
the strategy meeting a principle is theoretically guaranteed
to boost the target node’s ranking. Specifically, as given in

2The problem of ranking improvement on networks with a known structure is
studied in [18], but only the hardness result is shown and no algorithm is given.

TABLE I: Principle-Guided Strategies

Maximum Gain Minimum Loss
Centrality Betweenness Coreness Closeness Eccentrictiy
Strategy Multi-Point Single-Clique Multi-Point Double-Line

Table I, the maximum gain principle guides the choice of
the multi-point strategy and single-clique for betweenness and
coreness, respectively; the minimum loss principle guides the
choice of the multi-point strategy and double-line strategy for
closeness and eccentricity, respectively.

• Extensive empirical studies on real-world networks (Sec-
tion VII). We conduct experiments to validate the effective-
ness of the proposed principle-guided strategies. The experi-
ment results demonstrate that the proposed strategies are valid
in improving the centrality ranking on black-box networks.

II. PRELIMINARY

A. Notations

Given a graph G(VG, EG) with the node set VG and the edge
set EG ⊆ V 2

G, the node number is n = |VG| and the edge
number is m = |EG|. For ∀v ∈ VG, the neighbors NG(v) of
v are the nodes adjacent to v, i.e., NG(v) = {u|(v, u) ∈ EG}.
Accordingly, the degree of v is defined as the number of nodes
in NG(v) and is denoted as degG(v) = |NG(v)|. Given a
node set S ⊆ VG, the subgraph induced by S is denoted as
G[S] = (S,ES), where (u, v) ∈ ES if, and only if, u, v ∈ S
and (u, v) ∈ E. When inserting additional nodes ∆V and
edges ∆E in the original graph G, we get an updated graph
G′(V ′, E′) = G′(V ∪∆V , E ∪∆E).

Given a node pair (s, t) in G, the path pG(s, t) from s to t is
a sequence of nodes, 〈s = v0, v1, . . . , vk = t〉, with (vi, vi+1) ∈
EG, i ∈ [0, k−1]. The length of pG(s, t) is the number of edges
on pG(s, t). The path from s to t with the minimum length
is defined as the shortest path, whose length is defined as the
shortest distance and is denoted as distG(s, t).

For simplicity, we use V , E, N(v), deg(v), p(s, t), dist(s, t)
to denote VG, EG, NG(v), degG(v), pG(s, t), distG(s, t) re-
spectively. In this paper, we focus on unweighted and undirected
graphs. Moreover, we assume that graphs are connected; other-
wise, we work on the largest connected component.
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Fig. 1: Graph G

w1

w2

v1

v2
v3

v4

v5
v6

v7

v8

v9

v10

Fig. 2: Updated Graph G′

Example 2.1: Fig. 1 shows an example graph G. For v5,
N(v5) = {v1, v3, v6, v9} and deg(v5) = |N(v5)| = 4. The
subgraph G[S] induced by S = {v1, v3, v5, v6} is colored gray
in Fig. 1. The neighbor of v5 in G[S] is {v1, v3, v6}, and
degG[S](v5) = 3. A path from v5 and v7 in G is 〈v5, v1, v7〉
with length 2, which has the minimum length among all the
paths from v5 to v7, and dist(v5, v7) = 2. Fig. 2 shows an
updated graph G′ with additional nodes ∆V = {w1, w2} and
edges ∆E = {(w1, v4), (w2, v4)} attached to G.

B. Centrality Measures

We concentrate on four types of centrality measures: close-
ness, eccentricity, betweenness, and coreness.



TABLE II: Description of Symbols

Symbol Description
G, G′ Graph, and updated graph
C(v),C′(v) Centrality score of a node v in G, G′

C(v),C′(v) Reciprocal centrality score of a node v in G, G′

R(v),R′(v) Centrality ranking of a node v in G, G′

∆C(v) Score variation of v, i.e. C′(v)− C(v)
∆C(v) Reciprocal score variation of v, i.e. C′(v)− C(v)
∆R(v) Ranking variation of v, i.e., R(v)− R′(v)
BC, RC, CC, EC Assign C as betweenness, coreness, closeness, eccentricity
BC, RC, CC, EC Assign C as reciprocal score of BC, RC, CC, EC

Definition 2.1: (Closeness [5]) Given a graph G(V,E), the
closeness of a node v ∈ V is CC(v) = 1∑

u∈V
dist(v,u)

.

Definition 2.2: (Eccentricity [2]) Given a graph G(V,E), the
eccentricity of a node v ∈ V is EC(v) = 1

maxu∈V dist(v,u) .
Definition 2.3: (Betweenness [13]) Given a graph G(V,E),
the betweenness of a node v ∈ V is BC(v) =∑

(s,t)∈V 2,s6=t 66=v
σv(s,t)
σ(s,t) , where σ(s, t) is the number of s-t

shortest paths, and σv(s, t) is the number of s-t shortest paths
via node v.
Definition 2.4: (Coreness [15]) Given a graph G(V,E), the
coreness of a node v ∈ V , i.e., RC(v), is the largest k, such that
there is a subgraph G[S] includes v, and each node u ∈ S has
a degree not less than k in G[S], that is degG[S](u) ≥ k.
Example 2.2: For the graph G in Fig. 1, the shortest
distance from v1 to {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10} are
{0, 1, 1, 2, 1, 1, 1, 2, 2, 3}. Then, the closeness of v1 is CC(v1) =

1
0+1+1+2+1+1+1+2+2+3 = 1

14 . The eccentricity of v1 is
EC(v1) = 1

3 since 3 is the largest distance from v1 to other
nodes. To obtain the betweenness of v1, we enumerate all
the node pairs in the graph. For example, for pair (v3, v7),
δ(v3, v7) = 2 since there are two shortest paths between them;
δv1(v3, v7) = 1 since there is one v3-v7 shortest path via v1.
Then, δv1 (v3,v7)

δ(v3,v7) = 1
2 for pair (v3, v7). We summarize over all the

pairs and obtain BC(v1) = 9.5. The coreness of v1 is 3 because
there is a subgraph G[S] with nodes S = {v1, v3, v5, v6} that
includes v1. The degree of each node in G[S] is not less than 3,
and we cannot find another subgraph G[S′] containing v1, and
each node in G[S′] has a degree greater than 3.

III. PROBLEM FORMULATION

In this section, we first introduce some concepts when a graph
G is updated to G′, and then the centrality promotion problem
is formally defined. For ease of understanding, some commonly
used symbols are summarized in Table II.

Score Variation. Given a graph G(V,E), we define the centrality
measure C as a function that maps a node v ∈ V to the real
value C(v). For example, centrality measures CC, EC, BC, and
RC defined in Section II are centrality functions. For ∀v ∈ V ,
C(v) is the centrality score of v. We define the reciprocal
centrality score of v as the reciprocal of C(v) and denote it as
C(v) = 1

C(v) . When ∆V and ∆E are inserted to transform G

to an updated graph G′(V ′, E′) = G′(V ∪ ∆V , E ∪ ∆E), we
denote the centrality score of v in G′ as C′(v) and the reciprocal
centrality score as C′(v) = 1

C′(v) , for ∀v ∈ V ′.
For a node v ∈ V with C(v) in G and C′(v) in G′, we define

the score variation of v as the difference between the centrality
score of v in G′ and G and denote it as ∆C(v), i.e., ∆C(v) =
C′(v)−C(v). We also define the reciprocal score variation of
v as the difference between the reciprocal centrality score of v in

TABLE III: Score Variations and Ranking Variations (CC)

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 w1 w2

CC(v) 1
14

1
22

1
15

1
23

1
14

1
12

1
18

1
18

1
16

1
24 0 0

CC′(v) 1
20

1
30

1
19

1
25

1
20

1
18

1
26

1
26

1
24

1
34

1
35

1
35

R(v) 2 8 4 9 2 1 6 6 5 10 11 11
R′(v) 3 9 2 6 3 1 7 7 5 10 11 11

G′ and G and denote it as ∆C(v), i.e., ∆C(v) = C′(v)−C(v).
For a node w ∈ {V ′ \ V }, or w ∈ ∆V , w does not appear in
G, and we denote C(w) = 0 and C(w) = ∅3. Then we have
∆C(w) = C′(w) and ∆C(w) = C′(w).
Example 3.1: Table III shows the closeness of nodes in
Fig. 1 (denoted as G) and in Fig. 2 (denoted as G′). Here,
C is set to CC. For node v4 in V , CC(v4) = 1

23 and
CC(v4) = 23; CC′(v4) = 1

25 and CC′(v4) = 25. Therefore,
∆C(v4) = CC′(v4) − CC(v4) = 1

25 −
1

23 = − 2
575 , ∆C(v4) =

CC′(v4) − CC(v4) = 25 − 23 = 2. For node w1 ∈ ∆V ,
CC(w1) = 0, ∆C(w1) = CC′(w1) = 1

35 ; CC(w1) = ∅ and
∆C(w1) = CC′(w1) = 35.

Ranking Variation. Given a graph G(V,E), we define the cen-
trality ranking R(v) of a node v ∈ V as the position of C(v)
in the ordered centrality scores of nodes in V (sorted in non-
increasing order), i.e., R(v) = |{u|u ∈ V,C(u) > C(v)}| + 1,
where R(v) = 1 means v has the highest score while R(v) = |V |
implies v has the smallest score. When converting G(V,E) to
G′(V ′, E′), we denote the centrality ranking of v ∈ V ′ as R′(v),
i.e., R′(v) = |{u|u ∈ V ′,C′(u) > C′(v)}|+ 1.

For a node v ∈ V with R(v) in G and R′(v) in G′, we
define the ranking variation of v as the difference between
the ranking of v in G and G′ and denote it as ∆R(v), that is,
∆R(v) = R(v)−R′(v). For a node w ∈ ∆V , w does not appear
in G, and we derive R(w) by assuming C(v) = 0 in G, thereby
obtaining the ranking variation of w.
Example 3.2: In Table III, for node v4 ∈ V , R(v4) = 9 and
R′(v4) = 6. Thus, ∆R(v4) = R(v4)− R′(v4) = 9− 6 = 3. For
node w1 ∈ ∆V , R(w1) = 11 since we assume C(w1) = 0 in G;
R′(w1) = 11 in G′. Hence, ∆R(w1) = R(w1)− R′(w1) = 0.

Problem Definition. This paper focuses on exploring whether it
is possible to improve the centrality ranking of a target node
by adopting a promotion strategy. A promotion strategy is an
operation to transform G(V,E) to G′(V ∪ ∆V , E ∪ ∆E) by
inserting a certain structure (composed of ∆E and (or) ∆V ) into
G. For a target node t ∈ V , a strategy is effective if the centrality
ranking of t is upgraded, that is ∆R(t) = R(t) − R′(t) > 0.
Formally, the problem studied in this paper is the following.

Given a black-box network G(V,E), a target node t ∈
V , and a centrality measure C, we aim to investigate
whether there exists a promotion strategy to convert
G(V,E) to G′(V ∪∆V , E ∪∆E), thereby improving
the centrality ranking of t to make ∆R(t) > 0.

IV. PRACTICALLY USABLE PROMOTION STRATEGIES

This section provides practically usable promotion strategies.
The promotion strategy is defined as an operation that modifies
G to an updated graph G′. Note that we assume the network
structure is unknown. To meet this requirement, we attach a
structure (i.e., ∆V , ∆E) around the target node t to reshape G

3For ∀w ∈ ∆V , setting C(w) = ∅ may bring ambiguity. But this equation is
only for convention’s sake, and we will not use the value of C(w) in the sequel.
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Fig. 3: Strategies for v4

while avoiding changing the original topology of nodes in G.
To model promotion strategies with this requirement, we engage
a triple tuple [target node, promotion size, type] = [t, p, T ].
• target node is the node t to be upgraded.
• promotion size is the number p of inserted nodes ∆V , that

is, p = |∆V |.
• type specifies the structure T of nodes within ∆V , and from
T , we derive ∆E .

Different assignments of type lead to different types of
promotion strategies. We will introduce three strategies where
type is assigned as multiple points, double lines, and a single
clique, respectively.

Algorithm 1: Multi-Point Strategy.
Input: Graph G(V,E), [t, p,multiple points]
Output: Graph G′(V ∪∆V , E ∪∆E)

1 ∆V ← p points with no inter-connection;
2 for each node w ∈ ∆V do
3 ∆E ← (∆E ∪ (t, w));
4 return G′(V ∪∆V , E ∪∆E)

Multi-Point Strategy. If type is assigned as “multiple points”, we
get a multi-point strategy, whose detail is given in Algorithm 1.
First, p nodes without interconnection are introduced as ∆V

(Line 1). Then, for each node w ∈ ∆V , we insert an edge (w, t)
between w to the target node t to form ∆E (Line 2-3).
Example 4.1: For graph G in Fig. 1, the updated graph G′

using the multiple-point strategy [v4, 4,multiple points] is shown
in Fig. 3(a). In G′, four points {w1, w2, w3, w4} that are not
interconnected are attached to the target node v4.

Algorithm 2: Double-Line Strategy.
Input: Graph G(V,E), [t, p, double lines]
Output: Graph G′(V ∪∆V , E ∪∆E)

1 ∆V ← p points with no inter-connection;
2 Divide ∆V into two disjoint subsets S1 and S2 with equal

sizes;
3 for wi ∈ S1, where i = 1 : |S1| − 1 do
4 if i = 1 then
5 ∆E ← (∆E ∪ (t, wi));
6 ∆E ← (∆E ∪ (wi, wi+1));
7 for wi ∈ S2, where i = 1 : |S2| − 1 do
8 if i = 1 then
9 ∆E ← (∆E ∪ (t, wi));

10 ∆E ← (∆E ∪ (wi, wi+1));
11 return G′(V ∪∆V , E ∪∆E)

Double-Line Strategy. If type is assigned as “double lines”, we
get a double-line strategy, whose detail is given in Algorithm 2.
First, p nodes constitute ∆V (Line 1). Then, we divide the
inserted nodes ∆V into two equal-size4 subsets S1 and S2 such
that |S1| = |S2|, S1 ∪ S2 = ∆V , S1 ∩ S2 = ∅ (Line 2). For
S1 (Line 3), we connect the first node w1 ∈ S1 to t (Line 4-5),

4when p is odd, we make |S1| − |S2| = 1.

and for other nodes but the last node w|S1|, we connect wi to
wi+1 thus to form a line (Line 6); the same procedure happens
for nodes in S2 (Line 7-10).
Example 4.2: For graph G in Fig. 1, the updated graph G′

using the double-line strategy [v4, 4, double lines] is shown in
Fig. 3(b). In G′, two lines {w1, w2} and {w3, w4} are attached
to the target node v4.

Algorithm 3: Single-Clique Strategy.
Input: Graph G(V,E), [t, p, single clique]
Output: Graph G′(V ∪∆V , E ∪∆E)

1 ∆V ← p points with no inter-connection;
2 for wi ∈ ∆V , where i = 1 : |∆V | do
3 ∆E ← (∆E ∪ (wi, t));
4 for wj ∈ ∆V , where j = 1 : |∆V | do
5 if i < j then
6 ∆E ← (∆E ∪ (wi, wj));
7 return G′(V ∪∆V , E ∪∆E)

Single-Clique Strategy. If type is assigned as “single clique”, we
get a single-clique strategy, as shown in Algorithm 3. First, p
nodes establish ∆V (Line 1). Then, for ∀wi ∈ ∆V (Line 2), we
connect wi to t (Line 3) and all other nodes in ∆V .
Example 4.3: For graph G in Fig. 1, the updated graph G′

using the single-clique strategy [v4, 4, single clique] is shown
in Fig. 3(c). In G′, a clique (i.e., complete graph) with
{w1, w2, w3, w4} and the target node v4 is formed.
Remark 1: This paper investigates whether a black-box network
can be manipulated for centrality promotion. To this end, we
keep the promotion strategies simple enough to emphasize that
the black-box network is easy to control even with straightfor-
ward strategies. There are other equally important topics, such as
the detectability of strategies and the maximal promotion effect
under certain budgets. However, all these topics are underpinned
by our research — only when it is possible to raise the centrality
ranking on black-box networks are these topics of research
significance. We leave these topics as future work.

V. THEORETICALLY EFFECTIVE PROMOTION PRINCIPLES

Section IV introduces several practical promotion strategies.
But for a specific centrality measure, how to elect an effective
promotion strategy to guarantee that the target node’s ranking
will be improved? We respond to this question by giving two
principles in Section V-A as a guide for choosing the strategy.
Then, we provide examples of how these principles are exploited
in some commonly used centrality measures. For simplicity, the
proofs in this section are moved to the Appendix.

A. Promotion Principles

Maximum Gain Principle. The mechanism of the first principle
is straightforward yet non-trivial: when inserting additional
nodes into G using a strategy, we try to increase the centrality
scores of all nodes in G to a different extent. When the growth
of the centrality scores on the target node t is more significant
than those of all other nodes, the final scores of the target node
t will potentially exceed other high centrality nodes — thus,
resulting in an effective ranking upgrade. This scheme is called
the maximum gain principle, which is formally defined below.
Definition 5.1: (Maximum Gain Principle) Given a graph
G(V,E), a promotion strategy [t, p, T ] that converts G(V,E)
to an updated graph G′(V ∪∆V , E∪∆E) fulfills the maximum
gain principle for a centrality measure C if



• (Maximum Property) for an arbitrary size p, ∆C(t) ≥
∆C(v) ≥ 0, for ∀v ∈ V ;

• (Dominance Property) C′(t) ≥ C′(w), for ∀w ∈ ∆V ;
• (Boost Property) there exists a size p′ such that when p > p′,
C′(t) > C′(v), for some node v ∈ V with C(v) > C(t).

We now interpret this principle. For nodes v with scores no
larger than that of t in G, the maximum property ensures the
scores of nodes v will not overtake t in the updated graph G′;
the boost property guarantees that in G′, the score of t will
exceed at least one node whose score is larger than t in G.
These two properties ensure the ranking of t will be advanced
by at least one among the nodes in V . The dominance property
forces the ranking of nodes w in ∆V not to exceed t in G′.
As a result, the ranking of t in G′ will definitely be upgraded
compared to that in G. The effectiveness is formally presented
in Theorem 5.1.
Theorem 5.1: If a strategy [t, p, T ] fulfills the maximum gain
principle for a centrality measure C, then it converts G(V,E)
to G′(V ∪∆V , E ∪∆E) to make ∆R(t) > 0.

Minimum Loss Principle. The mechanism of the second princi-
ple is similar to the first one but with a reversed logic: when
inserting nodes into G, we try to decrease the centrality scores
of all nodes in G to different degrees. When the decline of the
centrality scores on the target node t is less significant than all
other nodes, the final scores of the target node t will potentially
exceed the other high centrality nodes in G, thus, producing
an effective ranking upgrade. This scheme is denoted as the
minimum loss principle and is formally defined below.
Definition 5.2: (Minimum Loss Principle) Given a graph
G(V,E), a promotion strategy [t, p, T ] that converts G(V,E)
to an updated graph G′(V ∪∆V , E ∪∆E) fulfills the minimum
loss principle for a centrality measure C if
• (Minimum Property) for an arbitrary size p, ∆C(v) ≥

∆C(t) ≥ 05, for ∀v ∈ V ;
• (Dominance Property) C′(t) ≥ C′(w), for ∀w ∈ ∆V ;
• (Boost Property) there exists a size p′ such that when p > p′,
C′(t) > C′(v), for some node v ∈ V with C(v) > C(t).

The interpretation of the minimum loss principle resembles
that of the maximum gain principle. The minimum property
guarantees that the ranking of nodes with scores no larger than
t are not ranked higher than t in G′, while the boost property
ensures that the ranking of t will be advanced by at least
one. The dominance property ensures the ranking of t is not
lower than the nodes in ∆V . Together, the ranking of t will be
improved definitely in G′, which is given in Theorem 5.2.
Theorem 5.2: If a strategy [t, p, T ] fulfills the minimum loss
principle for a centrality measure C, then it converts G(V,E)
to G′(V ∪∆V , E ∪∆E) to make ∆R(t) > 0.
Remark 2: Given a strategy [t, p, T ], for both principles, the
first two properties are fulfilled for every promotion size p.
However, the boost property only requires the existence of a
certain size p′. We can theoretically compute the value of p′ (see
Lemma 5.3, Lemma 5.6, Lemma 5.9, and Lemma 5.12), with
which the ranking of the target node will definitely increase.
Empirically, in Section VII, we observe that a small size (e.g.,
16) is sufficient to ensure an effective improvement using our
proposed strategies.

5When G is modified to G′, a positive ∆C(v) means a decrease in the score
of v, for ∀v ∈ V .

TABLE IV: Example of Maximum Gain Principle (BC)

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 w1 w2 w3 w4

BC(v) 9.5 0 8 0 4 13 0 0 8.5 0 0 0 0 0
R(v) 2 6 4 6 5 1 6 6 3 6 6 6 6 6
BC′(v) 15.5 0 40 42 8 23 0 0 12.5 0 0 0 0 0
R′(v) 4 7 2 1 6 3 7 7 5 7 7 7 7 7

Usage of Promotion Principles. We discuss how to select from
the above two principles for a specific centrality measure. We
apply the maximum gain principle when the insertion of new
nodes does not reduce the centrality score of any node in G. For
example, centrality measures such as betweenness and coreness
possess this feature (see [26] and references therein). Their
promotions will be introduced in Section V-B.

We adopt the minimum loss principle when the insertion of
new nodes does not increase the centrality score of any node
in G. Centrality measures such as closeness and eccentricity
admit this characteristic (see [26] and references therein). Their
upgrades will be presented in Section V-C.

B. Maximum Gain Principle-Guided Strategies
For centrality measures (e.g., betweenness and coreness)

where the maximum gain principle takes effect, Theorem 5.1
explains that the strategy meeting the maximum gain principle
will provide an effective promotion. Specifically, the maximum
gain principle guides the selection of the multi-point strategy for
betweenness and the single-clique strategy for coreness.

Multi-Point Strategy for Betweenness Centrality. We justify that
a multi-point strategy is effective for betweenness promotion by
verifying that it satisfies the three properties given in the max-
imum gain principle (Definition 5.1). Specifically, Lemma 5.1
verifies the maximum property, Lemma 5.2 validates the domi-
nance property, and Lemma 5.3 justifies the boost property.
Lemma 5.1: [t, p,multiple points] that converts G(V,E) to
G′(V ∪∆V , E∪∆E) fulfills the maximum property for BC, that
is, for an arbitrary size p, ∆C(t) ≥ ∆C(v) ≥ 0, for ∀v ∈ V .
Lemma 5.2: [t, p,multiple points] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E) fulfills the dominance property for BC,
that is, for an arbitrary size p, BC′(t) ≥ BC′(w), for ∀w ∈ ∆V .

Lemma 5.3: [t, p,multiple points] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E) fulfills the boost property for BC, that
is, there exists a size p′ =

√
BC(v)− BC(t) + 1 such that

when p > p′, BC′(t) > BC′(v), for some node v ∈ V with
BC(v) > BC(t).

Based on Lemmas 5.1-5.3 and Theorem 5.1, the effectiveness
of the multi-point strategy for BC is derived in Theorem 5.3.
Theorem 5.3: The multi-point strategy fulfills the maximum gain
principle for betweenness centrality (BC). Hence, given a graph
G(V,E), [t, p,multiple points] converts G(V,E) to an updated
graph G′(V ∪∆V , E ∪∆E) to make ∆R(t) > 0.
Example 5.1: For betweenness promotion, Table IV shows the
effect of the multi-point strategy [v4, 4,multiple points] that
transforms G in Fig. 1 to G′ in Fig. 3(a). (i) The maximum
property holds since ∆C(v4) = 42 is the maximum for nodes
in V . (ii) The dominance property holds since BC′(w1) =
BC′(w2) = BC′(w3) = BC′(w4) = 0 < BC′(v4). (iii) The
boost property holds since for v5 with BC(v5) > BC(v4), we
have BC′(v5) < BC′(v4) (when the size p = 4 > p′ =√

BC(v5)− BC(v4) + 1 = 3). Moreover, v4 now becomes the
node with the highest betweenness in the updated graph and its
ranking variation (6− 1 = 5) is larger than zero.



TABLE V: Example of Minimum Loss Principle (CC)

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 w1 w2 w3 w4

CC(v) 14 22 15 23 14 12 18 18 16 24 ∅ ∅ ∅ ∅
R(v) 2 8 4 9 2 1 6 6 5 10 11 11 11 11
CC′(v) 26 38 23 27 26 24 34 34 32 44 39 39 39 39
R′(v) 3 9 1 5 3 2 7 7 6 14 10 10 10 10

Single-Clique Strategy for Coreness Centrality. We verify that
a single-clique strategy satisfies the maximum gain principle
for coreness promotion by Lemma 5.4 (maximum property),
Lemma 5.5 (dominance property), and Lemma 5.6 (boost prop-
erty).
Lemma 5.4: [t, p, single clique] that converts G(V,E) to G′(V ∪
∆V , E ∪∆E) fulfills the maximum property for RC, that is, for
an arbitrary size p, ∆C(t) ≥ ∆C(v) ≥ 0, for ∀v ∈ V .
Lemma 5.5: [t, p, single clique] that converts G(V,E) to G′(V ∪
∆V , E∪∆E) fulfills the dominance property for RC, that is, for
an arbitrary size p, RC′(t) ≥ RC′(w), for ∀w ∈ ∆V .
Lemma 5.6: [t, p, single clique] that converts G(V,E) to G′(V ∪
∆V , E ∪ ∆E) fulfills the boost property for RC, that is, there
exists a size p′ = RC(v) + 1 such that when p > p′, RC′(t) >
RC′(v), for some node v ∈ V with RC(v) > RC(t).

Based on Lemmas 5.4-5.6 and Theorem 5.1, the effectiveness
of the single-clique strategy for RC is derived in Theorem 5.4.
Theorem 5.4: The single-clique strategy fulfills the maximum
gain principle for coreness centrality (RC). Hence, given a
graph G(V,E), [t, p, single clique] converts G(V,E) to an up-
dated graph G′(V ∪∆V , E ∪∆E) to make ∆R(t) > 0.

C. Minimum Loss Principle-Guided Strategies

For centrality measures (e.g., closeness and eccentricity)
where the minimum loss principle takes effect, Theorem 5.2
explains that the strategy meeting the minimum loss principle
will provide an effective promotion. Specifically, the minimum
loss principle guides the selection of the multi-point strategy for
closeness and the double-line strategy for eccentricity.

Multi-Point Strategy for Closeness Centrality. We demonstrate
that a multi-point strategy is effective for closeness improvement
by verifying it meets the three properties given in the minimum
loss principle (Definition 5.2). Specifically, Lemma 5.7 justifies
the minimum property, Lemma 5.8 verifies the dominance
property, and Lemma 5.9 validates the boost property.
Lemma 5.7: [t, p,multiple points] that converts G(V,E) to
G′(V ∪∆V , E∪∆E) fulfills the minimum property for CC, that
is, for an arbitrary size p, ∆C(v) ≥ ∆C(t) ≥ 0, for ∀v ∈ V .
Lemma 5.8: [t, p,multiple points] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E) fulfills the dominance property for CC,
that is, for an arbitrary size p, CC′(t) ≥ CC′(w), for ∀w ∈ ∆V .
Lemma 5.9: [t, p,multiple points] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E) fulfills the boost property for CC, that
is, there exists a size p′ = CC(t)−CC(v)

distG(v,t) such that when p > p′,
CC′(t) > CC′(v), for some node v ∈ V with CC(v) > CC(t).

Based on Lemmas 5.7-5.9 and Theorem 5.2, the effectiveness
of the multi-point strategy for CC is derived in Theorem 5.5.
Theorem 5.5: The multi-point strategy fulfills the minimum loss
principle for closeness centrality (CC). Hence, given a graph
G(V,E), [t, p,multiple points] converts G(V,E) to an updated
graph G′(V ∪∆V , E ∪∆E) to make ∆R(t) > 0.
Example 5.2: For closeness promotion, Table V shows the
effect of the multi-point strategy [v4, 4,multiple points] that

transforms G in Fig. 1 to G′ in Fig. 3(a). (i) The minimum
property holds since ∆C(v4) = 4 is the minimum for nodes in V .
(ii) The dominance property holds since CC′(w1) = CC′(w2) =
CC′(w3) = CC′(w4) = 1

39 < CC′(v4). (iii) The boost property
holds since for v2 with CC(v2) > CC(v4), we have CC′(v2) <
CC′(v4) (when the size p = 4 > p′ = CC(v4)−CC(v2)

distG(v4,t2) = 1
3 ).

Moreover, the positive ranking variation (9 − 5 = 4) of v4
confirms the effectiveness.

Double-Line Strategy for Eccentricity Centrality. We reveal that
a double-line strategy satisfies the minimum loss principle for
eccentricity promotion by Lemma 5.10 (minimum property),
Lemma 5.11 (dominance property), and Lemma 5.12 (boost
property).
Lemma 5.10: [t, p, double lines] that converts G(V,E) to
G′(V ∪∆V , E∪∆E) fulfills the minimum property for EC, that
is, for an arbitrary size p, ∆C(v) ≥ ∆C(t) ≥ 0, for ∀v ∈ V .
Lemma 5.11: [t, p, double lines] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E) fulfills the dominance property for EC,
that is, for an arbitrary size p, EC′(t) ≥ EC′(w), for ∀w ∈ ∆V .

Lemma 5.12: [t, p, double lines] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E) fulfills the boost property for EC, that
is, there exists a size p′ = 2 × EC(t) such that when p > p′,
EC′(t) > EC′(v), for some node v ∈ V with EC(v) > EC(t).

Based on Lemmas 5.10-5.12 and Theorem 5.2, the effective-
ness of the double-line strategy for EC is derived in Theorem 5.6.
Theorem 5.6: The double-line strategy fulfills the minimum loss
principle for eccentricity centrality (EC). Hence, given a graph
G(V,E), [t, p, double lines] converts G(V,E) to an updated
graph G′(V ∪∆V , E ∪∆E) to make ∆R(t) > 0.

VI. RELATED WORK

A. Centrality Promotion

Promotion with Known Network Structures. Existing studies
typically modify the original graph (by adding edges) when
network structures are known. Bergamini et al. [18] presented
the hardness result of maximizing the betweenness score and
devised a greedy algorithm. Given a coreness score, the issue of
maximizing the number of nodes whose coreness is no smaller
than that given score has been studied in [19]. In addition,
Crescenzi et al. [9] provided hardness and algorithmic results
to improve a target node’s closeness score. Furthermore, ap-
proximation algorithms have been designed in [20] to maximize
a target node’s eccentricity score.

While existing solutions apply to network owners who have
a complete view of network structures, we attack this problem
from the perspective of network users who do not have access
to the entire network structure, that is, users plan to modify
the graph without referring to the network structure, thereby
influencing the centrality calculated by the network owners. To
the best of our knowledge, this is the first work to explore
centrality promotion on a black-box network.

Greedy Algorithm for Betweenness Promotion. As an example
of how greedy algorithms are exploited in boosting centrality,
we present the algorithm developed in [18], which is used to
increase the betweenness score and is denoted as Greedy. Given
a graph G(V,E), a target node t, and a budget b, Greedy works
in b rounds. In each round, it selects an edge from {V 2 \ E}.
The output of Greedy is the selected b edges (denoted as B).
The specific procedure of Greedy is detailed as follows:



1) Initialize G′(V,E) as G(V,E) and compute BC(t) on G.
2) For each node v ∈ {V ′ \NG′(t)},

a) Add (v, t) into G′ temporarily and compute BC′(t) on
G′.

b) Compute ∆C(t|v) = BC′(t) − BC(t) and then remove
(v, t) from G′.

3) Select the node v with the largest ∆C(t|v) and insert (v, t)
into both G and B.

4) Stop after b rounds; otherwise go to step 1).
In step 1), we initialize the graph G′ as G and calculate

BC(t) of t on G. In Step 2), for each node v that is not directly
connected to t in G′, i.e., v ∈ {V ′ \ NG′(t)}, we temporarily
add the edge (v, t) into G′. We then calculate BC′(t) and obtain
the betweenness improvement ∆C(t|v) = BC′(t) − BC(t) of t
on G′, followed by removing this edge. Then, node v with the
maximum ∆C(t|v) is selected and we insert the edge (v, t) into
both G and the answer set B. This process stops after b rounds;
if not, we go to step 1) for a new iteration.

Note that in step 2), Greedy needs to compute ∆C(t|v) (for
∀v ∈ {V ′ \ NG′(t)}), which necessitates the knowledge of the
network structure to calculate BC′(t) and BC(t). Instead, our
method does not involve any computation on the network and
thus is feasible when the network structure is unknown. We
compare our method with Greedy in Section VII.

B. Centrality Measures

There are other centrality measures in the literature [4]. The
harmonic centrality of a node is the sum of the reciprocal
shortest distance from this node to all other nodes [27]. Katz
centrality determines the node’s importance by evaluating the
number of nodes that can reach it through a path, with a
penalization on the path length [28]. Current-flow betweenness
centrality evaluates node importance by applying the electrical
current model for information spreading [13]. Our principles
are applicable to guide the selection of suitable strategies for
these centrality measures (see Section V-A for guidance) —
provided the strategies conform to the proposed principles, they
are guaranteed to be effective.

VII. EXPERIMENTS

This section evaluates the performance of principle-guided
strategies on real-world graphs. We first present some experi-
mental settings, and then test the maximum gain principle and
minimum loss principle in Section VII-A and Section VII-B, re-
spectively, followed by a comparison with the greedy algorithm
in Section VII-C.

TABLE VI: Description of Datasets

Name Dataset n m Diameter Degeneracy
WIKI Wiki-vote 7,066 100,736 7 53
HEPP CA-HepPh 11,204 117,619 13 238
EPIN Epinions 75,877 405,739 15 67
SLAS Slashdot 77,360 469,180 12 54

Dataset. We conducted experiments on four real-world net-
works6. The details of these datasets are given in Table VI. We
assume the graphs are undirected. If not, the edge directions are
ignored. For a disconnected graph, we performed experiments
on the largest connected component. Table VI presents the node

6downloaded from http://snap.stanford.edu/data/index.html
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Fig. 4: Relative Ranking Variations (BC)

number (n) and edge number (m) of the largest connected com-
ponent of a graph G. The diameter of G is the largest reciprocal
eccentricity score of all nodes, i.e., maxv∈V (EC(v)) [29]. The
degeneracy of G is the largest coreness score of all nodes, i.e.,
maxv∈V (RC(v)) [15]. The algorithms used in this paper were
implemented using NetworkX [30] and teexGraph7 [29].

Metric. We propose strategies to promote a centrality measure
C. To assess the effectiveness of the proposed strategies in
upgrading centrality ranking, a simple metric is the ranking
variation ∆R(t) for the target node t. However, ∆R(t) is an
absolute value that does not consider the graph size; a desirable
alternative would be the relative ranking variation Ratio, which
is the ratio of ∆R(t) to the node number n, that is,

Ratio = ∆R(t)
n
× 100%.

A. Testing Maximum Gain Principle

We examine strategies that satisfy the maximum gain prin-
ciple: the multi-point strategy for betweenness and the single-
clique strategy for coreness. For all experiments, each time we
randomly selected one target node from the graph. We repeated
the process ten times to report the results. Specifically, the same
experiment was conducted ten times, each time for a selected
target node. For each target node, we set the promotion size p
from 4, 8, 16, 32, to 64 to insert ∆V (and ∆E).

Exp 1: Betweenness Centrality Promotion. This set of experi-
ments confirms that the multi-point strategy satisfies the three
properties of the maximum gain principle to promote between-
ness (BC) on real graphs.
Exp 1-1: Maximum Property. Recall that the maximum property
indicates that target node t has a score variation no smaller
than that of the other nodes in V . To this end, we compare
the score variations between target nodes t and node v, whose
score variation is maximal among the nodes in {V \ t}. Due
to space limitations, we only present the results for five target
nodes (by assigning new IDs from 1 to 5) on WIKI and HEPP
in Table VII — each row of Table VII is for one target node,
and each target node represents an independent experiment.

It can be found that on both datasets and at various sizes p,
the score variation of target node t is larger than v. For example,
on WIKI and when the size p is 4, the score variation is 56532
for t (with ID 1), while the score variation of v is 3512.2: the

7https://github.com/franktakes/teexgraph



TABLE VII: Score Variations of V (BC)

Dataset ID 4 8 16 32 64
t v t v t v t v t v

WIKI

1 56,532 3,512.2 113,096 7,046.4 226,320 14,092.8 453,152 28,185.5 908,352 56,371.1
2 56,532 46,979.1 113,096 93,958.2 226,320 187,916.5 453,152 375,833 908,352 751,666
3 56,532 20,037 113,096 40,073.9 226,320 80,147.9 453,152 160,295.8 908,352 320,591.6
4 56,532 11,867.3 113,096 23,734.6 226,320 47,469.3 453,152 94,938.5 908,352 189,877
5 56,532 9,493.3 113,096 18,986.5 226,320 37,973 453,152 75,946 908,352 151,892

HEPP

1 89,636 7,737.7 179,304 15,475.3 358,736 30,950.7 717,984 61,901.4 1,438,016 123,802.8
2 89,636 8,241.5 179,304 16,483.1 358,736 32,966.1 717,984 65,932.2 1,438,016 131,864.5
3 89,636 89,616 179,304 179,232 358,736 358,464 717,984 713,628 1,438,016 1,433,856
4 89,636 50,027.8 179,304 100,055.5 358,736 200,111.1 717,984 400,222.2 1,438,016 800,444.4
5 89,636 75,419.4 179,304 150,838.8 358,736 301,677.5 717,984 603,355.1 1,438,016 1,206,710.2

TABLE VIII: Scores of Target Nodes and ∆V (BC)

Dataset ID 4 8 16 32 64
t w t w t w t w t w

WIKI

1 179,818.3 0 236,382.3 0 349,606.3 0 576,438.3 0 1,031,638.3 0
2 56,532.7 0 113,096.7 0 226,320.7 0 453,152.7 0 908,352.7 0
3 56,593.2 0 113,157.2 0 226,381.2 0 453,213.2 0 908,413.2 0
4 57,139.1 0 113,703.1 0 226,927.1 0 453,759.1 0 908,959.1 0
5 58,305.5 0 114,869.5 0 228,093.5 0 454,925.5 0 910,125.5 0

HEPP

1 89,636 0 179,304 0 358,736 0 747,984 0 1,438,016 0
2 257,043.9 0 346,711.9 0 526,143.9 0 885,391.9 0 1,605,423.9 0
3 89,636 0 179,304 0 358,736 0 717,984 0 1,438,016 0
4 103,552.4 0 193,220.4 0 372,652.4 0 731,900.4 0 1451,932.4 0
5 89,636 0 179,304 0 358,736 0 717,984 0 1,438,016 0

TABLE IX: Score Variations of V (RC)

Dataset ID 4 8 16 32 64
t v t v t v t v t v

WIKI

1 1 0 5 0 13 0 29 0 61 1
2 0 0 1 0 9 0 25 0 57 1
3 0 0 2 0 10 0 26 0 58 1
4 2 0 6 0 14 0 30 1 62 1
5 2 0 6 0 14 0 30 1 62 1

HEPP

1 2 1 6 1 14 1 30 1 62 1
2 0 0 2 1 10 1 26 1 58 1
3 3 0 7 0 15 0 31 0 63 0
4 0 0 4 1 12 1 28 1 60 1
5 1 1 5 1 13 1 29 1 61 1

variation of t is more than ten times that of v. This means all
nodes in {V \ t} have score variations no larger than that of t.
Exp 1-2: Dominance Property. The dominance property reveals
that after inserting ∆V into G to form G′, target node t has a
betweenness score no smaller than that of nodes in ∆V . Thus,
we compare the betweenness score between target node t and
the nodes in ∆V in G′, and the results are in Table VIII.

Each row of Table VIII illustrates the comparison of between-
ness score between target node t and the node w whose score is
the maximum in ∆V . It can be found that BC′(t) is much larger
than BC′(w). Moreover, the score of w (which is maximum in
∆V ) is zero in Table VIII. This confirms that the target node
has a score no smaller than those of nodes in ∆V .
Exp 1-3: Boost Property. The boost property guarantees that, in
the updated graph G′ and when size p is sufficient, BC(t)′ will
exceed some node v in V whose BC(v) is larger than BC(t) in
G. Combining the former two properties, the boost property’s
effect is reflected in the positive ranking upgrade of t. Thus,
we show the relative ranking variations (Ratio) for ten target
nodes t on the four tested graphs in Fig. 4, where the maximum,
average, and minimum Ratio of these target nodes are reported.

Fig. 4 shows that the value of Ratio increases with the
increasing size p on all datasets. Furthermore, the Ratio of all
target nodes is larger than zero at various sizes p on the graphs
we used. For example, on HEPP, with only 8 inserted nodes,
the maximum Ratio of the target node exceeds 44.1%. This
means that, in the updated graph G′, the target node’s ranking
advances by more than 4940 (44.1%× 11204 > 4940).

Exp 2: Coreness Centrality Promotion. The second set of ex-
periments verifies that the single-clique strategy meets three
properties of the maximum gain principle to promote coreness
(RC) on real graphs.
Exp 2-1: Maximum Property. We compute the score variations
of nodes in V and report the results for five target nodes (IDs
from 1 to 5) on WIKI and HEPP in Table IX. Each row of
Table IX represents a comparison between a certain target node

TABLE X: Scores of Target Nodes and ∆V (RC)

Dataset ID 4 8 16 32 64
t w t w t w t w t w

WIKI

1 4 4 8 8 16 16 32 32 64 64
2 7 4 8 8 16 16 32 32 64 64
3 6 4 8 8 16 16 32 32 64 64
4 4 4 8 8 16 16 32 32 64 64
5 4 4 8 8 16 16 32 32 64 64

HEPP

1 4 4 8 8 16 16 32 32 64 64
2 6 4 8 8 16 16 32 32 64 64
3 4 4 8 8 16 16 32 32 64 64
4 4 4 8 8 16 16 32 32 64 64
5 4 4 8 8 16 16 32 32 64 64
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Fig. 5: Relative Ranking Variations (RC)

t and node v, whose score variation is the maximum among
nodes in {V \ t}. It can be observed that the score variation of
target node t is no smaller than those of nodes in {V \ t} under
various sizes p, which is consistent with the maximum property.
Exp 2-2: Dominance Property. Each row of Table X gives a
comparison of the coreness score between target node t and
node w whose score is maximal in ∆V . We can observe that,
in the updated graph G′, the score of t is not less than that of
w (and thus all nodes in ∆V ) at various p, which conforms to



TABLE XI: Reciprocal Score Variations of V (CC)

Dataset ID 4 8 16 32 64
t v t v t v t v t v

WIKI

1 4 8 8 16 16 32 32 64 64 128
2 4 8 8 16 16 32 32 64 64 128
3 4 8 8 16 16 32 32 64 64 128
4 4 8 8 16 16 32 32 64 64 128
5 4 8 8 16 16 32 32 64 64 128

HEPP

1 4 8 8 16 16 32 32 64 64 128
2 4 8 8 16 16 32 32 64 64 128
3 4 8 8 16 16 32 32 64 64 128
4 4 8 8 16 16 32 32 64 64 128
5 4 8 8 16 16 32 32 64 64 128
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Fig. 6: Relative Ranking Variations (CC)

the dominance property.
Exp 2-3: Boost Property. Fig. 5 shows the relative ranking vari-
ations (Ratio) for ten target nodes on all four datasets. We
report the maximum, minimum, and average Ratio of these
target nodes. From Fig. 5, we find that all the target nodes
successfully upgrade their centrality rankings given a suitable
size p — the Ratio value is larger than zero at that size. For
example, on WIKI, the minimum Ratio among the ten target
nodes is larger than 9.2% when p is only 16. Combining the
former two properties, the non-negative ranking improvement
implies that the single-clique strategy fulfills the boost property.

B. Testing Minimum Loss Principle

These experiments study the strategies that fulfill the min-
imum loss principle: the multi-point strategy for closeness
and the double-line strategy for eccentricity. The experimental
settings are similar to the test of the maximum gain principle.

Exp 3: Closeness Centrality Promotion. The third set of exper-
iments demonstrates that the multi-point strategy satisfies the
three properties of the minimum loss principle to promote
closeness (CC) on real graphs.
Exp 3-1: Minimum Property. Note that the minimum property
indicates that target node t has a reciprocal score variation no
larger than that of other nodes. For this purpose, we compare
the reciprocal score variation between target node t and node v,
which has the smallest reciprocal score variation in {V \t}. Due
to space constraints, Table XI shows the results for five target
nodes (by assigning new IDs from 1 to 5) on WIKI and HEPP.

Each row of Table XI represents a separate experiment in
which a target node t is selected to be promoted. Table XI shows
that the reciprocal score variation of target node t is smaller
than the variation of node v, whose variation is the minimum in
{V \ t}. For example, for target node t with ID 1 and at the size
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8 on WIKI, the reciprocal score variation of t is 8, while the
variation of v is 16. This implies that the multi-point strategy
fulfills the minimum property.

Exp 3-2: Dominance Property. Each row of Table XII compares
the closeness score between target node t and node w (with the
largest score in ∆V ). It can be seen that the score of each target
node t is no smaller than that of w at various p in the updated
graph G′. For example, on WIKI, the closeness of t with ID 1
is 1

23450 , while the closeness of node w with the largest score in
∆V is 1

30518 . These results indicate that the multi-point strategy
satisfies the minimum property.

Exp 3-3: Boost Property. Fig. 6 shows the relative ranking vari-
ations (Ratio) for ten target nodes on four datasets, where the
maximum, minimum, and average Ratio of these target nodes
are reported. This figure shows that the Ratio is larger than zero
for most target nodes at various p. For example, when p = 16, all
target nodes have Ratio values larger than zero. Combining the
first two properties, the positive Ratio suggests that the multi-
point strategy meets the boost property.

Exp 4: Eccentricity Centrality Promotion. The fourth set of ex-
periments demonstrates that the double-line strategy conforms
to the three properties of the minimum loss principle to upgrade
eccentricity (EC) on real graphs.

Exp 4-1: Minimum Property. Table XIII depicts the reciprocal
score variations ∆C for t and v (whose variations are the smallest
in {V \ t}). We find that the reciprocal score variation of target
node t is not larger than those of nodes in {V \ t} on WIKI and
HEPP. These results reveal that target node t has the minimum
loss of all the nodes in V .

Exp 4-2: Dominance Property. Table XIV compares the eccen-
tricity score between target node t and node w (whose score
is the maximum in ∆V ) in the updated graph G′. It can be
observed that the score of t is not less than that of w (and thus
all nodes in ∆V ).

Exp 4-3: Boost Property. Fig. 7 shows the ranking variations
(Ratio) of ten target nodes on four datasets. Fig. 7 shows that
most target nodes’ Ratio values are positive at various sizes of
p, although some Ratio values are not significant for some small
p. For example, when p is 16, on EPIN, the maximum Ratio
is 89.2%, while the minimum Ratio is 0.8%. The non-negative
Ratio confirms that the ranking of target node t exceeds some
node in {V \t} whose score is larger than t in the original graph,
thereby resulting in an effective improvement.



TABLE XII: Scores of Target Nodes and ∆V (CC)

Dataset ID 4 8 16 32 64
t w t w t w t w t w

WIKI

1 1
23,450

1
30,518

1
23,454

1
30,526

1
23,462

1
30,542

1
23,478

1
30,574

1
23,510

1
30,638

2 1
25,883

1
32,951

1
25,887

1
32,959

1
25,895

1
32,975

1
25,911

1
33,007

1
25,943

1
33,071

3 1
25,788

1
32,856

1
25,792

1
32,864

1
25,800

1
32,880

1
25,816

1
32,912

1
25,848

1
32,976

4 1
25,782

1
32,850

1
25,786

1
32,858

1
25,794

1
32,874

1
25,810

1
32,906

1
25,842

1
32,970

5 1
27,254

1
34,322

1
27,258

1
34,330

1
27,266

1
34,346

1
27,282

1
34,378

1
27,314

1
34,442

HEPP

1 1
45,845

1
57,051

1
45,849

1
57,059

1
45,857

1
57,075

1
45,873

1
57,107

1
45,905

1
57,171

2 1
49,887

1
61,093

1
49,891

1
61,101

1
49,899

1
61,117

1
49,915

1
61,149

1
49,947

1
61,213

3 1
56,192

1
67,398

1
56,196

1
67,406

1
56,204

1
67,422

1
56,220

1
67,454

1
56,252

1
67,518

4 1
53,701

1
64,907

1
53,705

1
64,915

1
53,713

1
64,931

1
53,729

1
64,963

1
53,761

1
65,027

5 1
56,837

1
68,043

1
56,841

1
68,051

1
56,849

1
68,067

1
56,865

1
68,099

1
56,897

1
68,163

TABLE XIII: Reciprocal Score Variations of V (EC)

Dataset ID 4 8 16 32 64
t v t v t v t v t v

WIKI

1 0 0 0 0 2 4 10 12 26 28
2 0 0 0 0 2 4 10 12 26 28
3 0 0 0 0 2 4 10 12 26 28
4 0 0 0 0 2 4 10 12 26 28
5 0 0 0 0 2 4 10 12 26 28

HEPP

1 0 0 0 0 0 0 7 8 23 24
2 0 0 0 0 0 0 7 8 23 24
3 0 0 0 0 0 0 7 8 23 24
4 0 0 0 0 0 0 7 8 23 24
5 0 0 0 0 0 1 7 9 23 25

TABLE XIV: Scores of Target Nodes and ∆V (EC)

Dataset ID 4 8 16 32 64
t w t w t w t w t w

WIKI

1 1
6

1
7

1
6

1
7

1
8

1
9

1
16

1
17

1
32

1
33

2 1
6

1
7

1
6

1
7

1
8

1
9

1
16

1
17

1
32

1
33

3 1
6

1
7

1
6

1
7

1
8

1
9

1
16

1
17

1
32

1
33

4 1
6

1
7

1
6

1
7

1
8

1
9

1
16

1
17

1
32

1
33

5 1
6

1
7

1
6

1
7

1
8

1
9

1
16

1
17

1
32

1
33

HEPP

1 1
9

1
10

1
9

1
10

1
9

1
10

1
16

1
17

1
32

1
33

2 1
9

1
10

1
9

1
10

1
9

1
10

1
16

1
17

1
32

1
33

3 1
9

1
10

1
9

1
10

1
9

1
10

1
16

1
17

1
32

1
33

4 1
9

1
10

1
9

1
10

1
9

1
10

1
16

1
17

1
32

1
33

5 1
9

1
10

1
9

1
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1
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1
10

1
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1
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1
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Fig. 8: Comparison of Relative Ranking Variations

C. Comparison with a Greedy Algorithm

To further examine the effectiveness of the proposed strate-
gies, we compare our multi-point strategy (denoted as Multi-
Point) with the greedy algorithm (Greedy) for betweenness
promotion. The comparisons for other centrality measures are
omitted due to space limitations. Details of Greedy are pre-
sented in Section VI, and the description of Multi-Point is in
Algorithm 1.

Although Greedy inserts edges into the graph while our
method Multi-Point inserts nodes into the graph, both methods
increase the betweenness score when the graph is modified.
In this case, we test the effect of both methods in terms of
promotion size p (i.e., the edge number for Greedy and the
node number for Multi-Point). As suggested in [18], we select
five target nodes t (with initially low betweenness scores) for
boosting and set promotion size p ranging from 1 to 10. The
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Fig. 9: Comparison of Score Variations

promotion effect is evaluated by score variation and relative
ranking variation (Ratio) before and after the insertion. The
results are reported as the average value over five target nodes.

Exp-5: Comparison of Relative Ranking Variation. We show
the average relative ranking variation (Ratio) of Greedy and
Multi-Point on WIKI and HEPP in Fig. 8. On WIKI, Multi-
Point’s Ratio outperforms Greedy’s at all p. For example, when
10 nodes/edges are inserted, Multi-Point’s Ratio is 61.3%,
while Greedy’s Ratio is 60.8%. On HEPP, although Greedy’s
Ratio is always better than Multi-Point’s, the gap narrows as
p increases. For instance, when p = 1, Greedy’s Ratio is 1.9
times better than that of Multi-Point, while Greedy’s Ratio is
1.1 times better than Multi-Point’s when p = 10. This means
our proposed Multi-Point is comparable with Greedy regarding
the ranking promotion.

Exp-6: Comparison of Score Variation. We present the average
score variation in Fig. 9. On WIKI, the average score variation
of Multi-Point is slightly better than that of Greedy at various p.
Nevertheless, the difference is relatively small: the variation of
Multi-Point is only 1.15 times larger than that of Greedy when
p = 10. On the other hand, on HEPP, Greedy outperforms
Multi-Point significantly: when p = 10, the Greedy’ score
variation is over 11.5 times better than that of Multi-Point. This
is reasonable because Multi-Point lacks the network structure for
promotion, and its aim is for ranking promotion. In this case,
Greedy is applicable when score promotion is the primary goal.

VIII. CONCLUSION

This paper provides an affirmative answer to whether it is
possible to improve a target node’s centrality ranking on a
black-box network. By designing feasible strategies, we elim-
inate the dependence on the network structure for promotion.
The effectiveness of promotion strategies is supported by the
maximum gain principle and minimum loss principle. Extensive
experimental studies on real-world networks confirm that the
principle-guided strategies effectively improve the target nodes’
centrality ranking for various centrality measures. We hope our
research can pave the way for more attention on manipulating
black-box networks for fun and profit.

ACKNOLEDGEMENT

Min Gao is supported by the Natural Science Founda-
tion of Chongqing, China (cstc2020jcyj-msxmX0690), and the
Fundamental Research Funds for the Central Universities of
Chongqing University (2020CDJ-LHZZ-039). Lu Qin is sup-
ported by ARC FT200100787.



REFERENCES
[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex

networks: Structure and dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175–308,
2006.

[2] P. Hage and F. Harary, “Eccentricity and centrality in networks,” Social Networks,
vol. 17, no. 1, pp. 57–63, 1995.

[3] V. Nicosia, R. Criado, M. Romance, G. Russo, and V. Latora, “Controlling centrality
in complex networks,” Scientific Reports, vol. 2, p. 218, 2012.
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APPENDIX

A. Proofs for Section V-A.
Proofs of Theorem 5.1. We prove it via the properties in Definition 5.1.

• Maximum Property implies that C′(v) ≤ C′(t) (or equivalently,
R′(t) ≤ R′(v)), for ∀v ∈ V with C(v) ≤ C(t), since otherwise
∆C(v) = C′(v) − C(v) is larger than ∆C(t) = C′(t) − C(t),
contradiction.

• Dominance Property indicates that R′(t) ≤ R′(w), for ∀w ∈ ∆V .
• Boost Property shows that when p > p′, R′(t) > R′(v), for at least

a node v ∈ V with C(v) > C(t).
Suppose there are num nodes with scores larger than t in G, i.e.,
num = |{v ∈ V |C(v) > C(t)}|, then there are at most num − 1
nodes in V with scores larger than t in G′ (by Boost Property). Hence,
R(t) = num + 1 and R′(t) ≤ num + 1 − 1. Therefore, ∆R(t) =
R(t)− R′(t) ≥ 1 > 0.
Proofs of Theorem 5.2. The proof is similar to that of Theorem 5.1.

B. Proofs for Strategy for Betweenness Centrality
We first give some supporting lemmas and then provide proofs for

Lemmas 5.1-5.3, and Theorem 5.3. When G(V,E) is converted to
G′(V ∪∆V , E ∪∆E), σ(a, b) and σ′(a, b) denote the number of a-b
shortest paths in G and G′, respectively; σv(a, b) and σ′v(a, b) denote
the number of a-b shortest paths via v in G and G′, respectively.
Lemma S.1: Given [t, p,multiple points] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E), any a-b shortest path does not pass through
a node in ∆V , for ∀(a, b) ∈ V 2.
Proof: If w ∈ ∆V is on an a-b shortest path, then the a-b path can be
shortened by connecting a to t then to b (to bypass w), contradiction.
Lemma S.2: Given [t, p,multiple points] that converts G(V,E) to
G′(V ∪∆V , E ∪∆E), σ′(a, b) = σ(a, b), for ∀(a, b) ∈ V 2.
Proof: Since we only append nodes around t and do not change edges
within V , σ′(a, b) ≥ σ(a, b); σ′(a, b) ≤ σ(a, b) since otherwise a new
a-b path must contain w ∈ ∆V , which contradicts with Lemma S.1.
Lemma S.3: Given [t, p,multiple points] that converts G(V,E) to
G′(V ∪∆V , E∪∆E), σ′v(a, b) = σv(a, b), for ∀v ∈ V , ∀(a, b) ∈ V 2,
v 6= a 6= b.
Proof: Lemma S.2 indicates there is no increase in shortest path number
for node pairs in V . (i) If v is not on any a-b shortest path, σ′v(a, b) =
σv(a, b) = 0; (ii) If v is on some a-b shortest paths, by [31], σv(a, b) =
σ(v, a)× σ(v, b) equals σ′v(a, b) = σ′(v, a)× σ′(v, b).
Lemma S.4: Given [t, p,multiple points] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E), σ′t(a, b) = σ′(a, b), for ∀(a, b) ∈ {∆V ×
{V ∪∆V }} ∪ {{V ∪∆V } ×∆V }, a 6= b 6= t.
Proof: We only prove the case for (a, b) ∈ {∆V ×{V ∪∆V }} since the
other case is symmetric. If σ′t(a, b) 6= σ′(a, b), then node a connects
to some node w 6= t to reach b, which means degG′ (a) ≥ 2. This
contradicts with the fact that degG′ (a) = 1 (a only connects to t).
Lemma S.5: Given [t, p,multiple points] that converts G(V,E) to
G′(V ∪∆V , E ∪∆E), σ′v(a, b) = 0, for ∀(a, b) ∈ ∆2

V , ∀v ∈ {V \ t},
a 6= b 6= v.
Proof: Suppose σ′v(a, b) 6= 0, then the a-b shortest path via v is
shortened by connecting a to t then to b, contradiction.
Lemma S.6: Given [t, p,multiple points] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E), σ′w(a, b) = 0, for ∀w ∈ ∆V , ∀(a, b) ∈
{V ∪∆V }2, a 6= b 6= w.
Proof: If σ′w(a, b) 6= 0, degG′ (w) ≥ 2 because w is on some a-b path,
which contradicts with the fact that degG′ (w) = 1.
Proof of Lemma 5.1. Denote σv(a,b)

σ(a,b) as PBCv(a, b) and σ′
v(a,b)
σ′(a,b) as

PBC′v(a, b). Given u ∈ V , by Lemma S.2 and Lemma S.3,
PBCu(a, b) = PBC′u(a, b), for ∀(a, b) ∈ V 2, a 6= b 6= u; since
∆V do not exist in G, PBCu(a, b) = 0, for ∀(a, b) ∈ {∆V × {V ∪
∆V }} ∪ {{V ∪∆V } ×∆V }, a 6= b 6= u. We divide V into {t} and
{V \ t}. For t, by lemma S.4, PBC′t(a, b) = 1, for ∀(a, b) ∈ {∆V ×
{V ∪∆V }}∪ {{V ∪∆V }×∆V }. Thus, ∆C(t) = BC′(t)−BC(t) =
Σ(a,b)∈V 2∪{V×∆V }∪{∆V ×V }∪∆2

V
(PBC′t(a, b) − PBCt(a, b)) = 0 +

2(|V | − 1) × |∆V | + |∆V | × (|∆V | − 1). For v ∈ {V \ t}, (i) for
∀(a, b) ∈ ∆2

V , PBC′v(a, b) = 0 by Lemma S.5; (ii) for ∀(a, b) ∈
{∆V × V } ∪ {V × ∆V }, PBC′v(a, b) ≤ 1 [31]. Thus, ∆C(v) =
BC′(v) − BC(v) = Σ(a,b)∈V 2∪{V×∆V }∪{∆V ×V }∪∆2

V
(PBC′v(a, b) −



PBCv(a, b)) ≤ 0 + 2(|V | − 1) × |∆V | + 0. Consequently, ∆C(t) −
∆C(v) ≥ |∆V | × (|∆V | − 1) ≥ 0.
Proof of Lemma 5.2. For w ∈ ∆V , BC′(w) = 0 by Lemma S.6. Then,
BC′(t) ≥ BC′(w) since betweenness is non-negative [31].
Proof of Lemma 5.3. From proof of Lemma 5.1, ∆C(t) − ∆C(v) ≥
|∆V | × (|∆V | − 1) ≥ (|∆V | − 1)2. Given v ∈ {V \ t} with BC(v) >
BC(t), ∆C(t) −∆C(v) > BC(v) − BC(t) derives BC′(v) < BC′(t).
Thus, BC′(t) > BC′(v), if |∆V | = p > p′ =

√
BC(v)− BC(t) + 1.

Proof of Theorem 5.3. By Lemmas 5.1-5.3 and Theorem 5.1.

C. Proofs for Strategy for Coreness Centrality
We first present supporting lemmas and then give proofs for Lem-

mas 5.4-5.6, and Theorem 5.4
Lemma S.7: Given a graph G(V,E), if v ∈ V is contained in a clique
S with size |S| = k, then RC(v) ≥ k − 1.
Proof: For ∀v ∈ S, degS(v) ≥ k− 1, and then RC(v) ≥ k− 1 in G.
Lemma S.8: Given [t, p, single clique] that converts G(V,E) to
G′(V ∪∆V , E ∪∆E), RC′(w) = |∆V |, for ∀w ∈ ∆V .
Proof: RC′(w) ≥ |∆V | by Lemma S.7 since t and w ∈ ∆V form a
clique; RC′(w) ≤ |∆V | as w’s coreness is bounded by its degree [32].
Lemma S.9: Given [t, p, single clique] that converts G(V,E) to
G′(V ∪∆V , E∪∆E), if ∆C(t) = 0, then ∆C(v) = 0 for ∀v ∈ {V \t}.
Proof: For ∀v ∈ {V \ t}, let S be the maximal subgraph in G, s.t.,
v ∈ S and degS = RC(v); let S′ be the maximal subgraph in G′, s.t.,
v ∈ S′ and degS′ = RC′(v). When ∆C(v) > 0, {S′ \S} ⊆ {t∪∆V }.
The fact v connects ∆V only by t means t ∈ {S′\S}, thus ∆C(t) 6= 0.
Lemma S.10: Given [t, p, single clique] that converts G(V,E) to
G′(V ∪∆V , E∪∆E), ∆C(v) = RC′(v)−RC(v) ≤ 1, for ∀v ∈ {V \t}.
Proof: We reuse the symbols S and S′ as in the proof of Lemma S.9.
The facts {S′ \ S} ⊆ {t ∪∆V } and v has no direct connection with
∆V indicate the degree of nodes v ∈ S can be reduced by at most one
by deleting {S′ \ S} from S′, hence, RC(v) ≤ RC′(v)− 1.
Proof of Lemma 5.4. By Lemma S.9, if ∆C(t) = 0, ∆C(v) = 0, ∀v ∈
{V \ t}; By Lemma S.10, if ∆C(t) 6= 0, then ∆C(v) ≤ 1 ≤ ∆C(t).
Proof of Lemma 5.5. By Lemma S.7, RC′(t) ≥ |∆V | (t and ∆V form
a clique); By Lemma S.8, RC′(w) = |∆V |, for ∀w ∈ ∆V .
Proof of Lemma 5.6. By Lemma S.7, RC′(t) ≥ |∆V |; By Lemma S.10,
∆C(v) ≤ 1, for ∀v ∈ {V \ t}. Given RC(v) > RC(t), RC′(t) ≥
|∆V | > RC(v) + 1 ≥ RC′(v) when |∆V | = p > p′ = RC(v) + 1.
Proof of Theorem 5.4. By Lemmas 5.4-5.6 and Theorem 5.1.

D. Proofs for Strategy for Closeness Centrality
We first provide supporting lemmas and then present proofs for

Lemmas 5.7-5.9, and Theorem 5.5.
Lemma S.11: Given [t, p,multiple points] that converts G(V,E) to
G′(V ∪∆V , E ∪∆E), distG′ (a, t) + distG′ (t, b) = distG′ (a, b), for
∀(a, b) ∈ {{V ∪∆V } ×∆V } ∪ {∆V × {V ∪∆V }}, a 6= b.
Proof: We verify the case for (a, b) ∈ {{V ∪∆V } ×∆V } since the
other case is similar. If distG′ (a, t)+distG′ (t, b) 6= distG′ (a, b), then
any a-b shortest path bypasses t in G′, which contradicts with the fact
that b only connects to t, for ∀b ∈ ∆V , b 6= a.
Lemma S.12: Given [t, p,multiple points] that converts G(V,E) to
G′(V ∪∆V , E ∪∆E), distG′ (a, b) = distG(a, b), for ∀(a, b) ∈ V 2.
Proof: distG′ (a, b) ≤ distG(a, b) since edges within V do not change;
distG′ (a, b) ≥ distG(a, b) since otherwise a new a-b shortest path via
w ∈ ∆V can be shortened by connecting a to t then to b, contradiction.
Proof of Lemma 5.7. For ∀u ∈ V , (i) distG′ (u, a) = distG(u, a),
for ∀a ∈ V ; (ii) distG(u, a) = 0 since ∆V is not in G, for
∀a ∈ ∆V . Thus, ∆C(u) = Σa∈{V ∪∆V }distG′ (u, a)− distG(u, a) =
Σa∈∆V

distG′ (u, a). Consequently, for ∀v ∈ {V \t}, ∆C(v)−∆C(t) =
Σa∈∆V

(distG′ (v, a)− distG′ (t, a)) = Σa∈∆V
distG′ (v, t) > 0.

Proof of Lemma 5.8. For ∀w ∈ ∆V , by Lemma S.11, CC′(w) =
1

Σa∈{V ∪∆V }distG′ (w,a) = 1
Σa∈{V ∪∆V }{distG′ (w,t)+distG′ (t,a)} <

1
Σa∈{V ∪∆V }distG′ (t,a) = CC′(t).

Proof of Lemma 5.9. From proof of Lemma 5.7, ∆C(v) − ∆C(t) =
Σa∈∆V

distG′ (v, t) = |∆V |distG(v, t) (by Lemma S.12), for ∀v ∈
{V \ t}. Given CC(v) > CC(t), CC′(v) < CC′(t) (or equivalently,
CC′(v) > CC′(t)) when ∆C(v) − ∆C(t) = |∆V |distG(v, t) >

CC(t)− CC(v), or |∆V | = p > p′ = CC(t)−CC(v)
distG(v,t) .

Proof of Theorem 5.5. By Lemmas 5.7-5.9 and Theorem 5.2.

E. Proofs for Strategy for Eccentricity Centrality
We first present some supporting lemmas and then show proofs for

Lemmas 5.10-5.12, and Theorem 5.6. We define the aggregate distance
from v to a set of nodes S ⊆ V as distG(v, S) = maxu∈S distG(v, u).
Lemma S.13: Given a graph G(V,E), EC(v) =
max(distG(v, S), distG(v, {V \ S})), for ∀v ∈ V , ∀S ⊆ V .
Proof: EC(v) = maxu∈{S∪{V \S}} distG(u, v) =
max(distG(v, S), distG(v, {V \ S})).
Lemma S.14: Given a graph G(V,E), EC(a) ≤ dist(a, b) + EC(b),
for ∀(a, b) ∈ V 2.
Proof: Let c be the node, s.t., distG(a, c) = EC(a), then EC(a) =
distG(a, c) ≤ distG(a, b) + distG(b, c) ≤ distG(a, b) + EC(b).
Lemma S.15: Given [t, p, double lines] that converts G(V,E) to
G′(V ∪∆V , E ∪∆E), i) distG′ (a, b) = distG′ (a, t) + distG′ (t, b),
for ∀(a, b) ∈ {∆V × {V ∪∆V } ∪ {V ∪∆V } ×∆V }, distG′ (a, b) >
distG′ (a, t); ii) distG′ (b,∆V ) = distG′ (b, t)+distG′ (t,∆V ), b ∈ V .
Proof: ∆V consists of two disjoint sets S1 and S2 (on each of the
double lines). Moreover, t is the cut node among S1, S2, and {V \ t}
in G′ — deleting t separates these parts. Therefore, distG′ (a, t) +
distG′ (t, b) = distG′ (a, b) by the cut property [33], for ∀(a, b) ∈
{∆V × {V ∪∆V } ∪ {V ∪∆V } ×∆V }, distG′ (a, b) > distG′ (a, t)
(to avoid a, b being both in S1 or S2); In addition, for ∀b ∈ V ,
distG′ (b,∆V ) = maxw∈∆V

distG′ (b, w) = maxw∈∆V
distG′ (b, t)+

distG′ (t, w) = distG′ (b, t) + distG′ (t,∆V ).
Lemma S.16: Given [t, p, double lines] that converts G(V,E) to
G′(V ∪∆V , E ∪∆E), distG′ (a, b) = distG(a, b), for ∀(a, b) ∈ V 2;
distG′ (a, S) = distG(a, S), for ∀a ∈ V, ∀S ⊆ V .
Proof: distG′ (a, b) ≤ distG(a, b) since edges within V do not change;
distG′ (a, b) ≥ distG(a, b) since otherwise a new a-b shortest path via
w ∈ ∆V can be shortened by connecting a to t then to b. For S ⊆ V ,
by aggregating over b ∈ S, distG′ (a, S) = distG(a, S).
Lemma S.17: Given [t, p, double lines] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E), if EC′(t) < EC(t), then EC′(t) =
distG′ (t,∆V ); otherwise, EC′(t) = distG′ (t, V ) = distG(t, V ).
Proof: By Lemma S.16, distG′ (t, V ) = distG(t, V ). EC′(t) =
max(distG′ (t, V ), distG′ (t,∆V )) = max(EC(t), distG′ (t,∆V )).
Thus, EC′(t) < EC(t) (resp. EC′(t) > EC(t)) implies EC′(t) =
distG′ (t,∆V ), and EC′(t) = EC(t) indicates EC′(t) = EC(t) =
distG′ (t, V ) = distG(t, V ).
Lemma S.18: Given [t, p, double lines] that converts G(V,E) to
G′(V ∪ ∆V , E ∪ ∆E), if EC′(t) < EC(t), then EC′(v) < EC(v),
for ∀v ∈ V .
Proof: If EC′(t) < EC(t), then EC′(t) = distG′ (t,∆V )
by Lemma S.17. This means distG′ (t,∆V ) > distG′ (t, V ) =
distG(t, V ). For ∀v ∈ {V \ t}, disG′ (v,∆V ) = distG′ (v, t) +
distG′ (t,∆V ) > distG(v, t) + distG(t, V ) ≥ EC(v) (by
Lemma S.14). Then, EC′(v) ≥ disG′ (v,∆V ) > EC(v), and thus
EC′(v) < EC(v).
Proof of Lemma 5.10. We discuss two cases. (i) If ∆C(t) = 0, for
∀v ∈ {V \ t}, EC′(v) = max(distG′ (v, V ), distG′ (v,∆V )) ≥
distG′ (v, V ) = distG(v, V ) = EC(v). Then, ∆C(v) ≥ ∆C(t) = 0.
(ii) If ∆C(t) > 0, by Lemma S.17, EC′(t) = distG′ (t,∆V ); by
Lemma S.18, EC′(v) = distG′ (v,∆V ) because EC′(v) < EC(v),
for ∀v ∈ {V \ t}. Thus, ∆C(v) − ∆C(t) = (distG′ (v,∆V ) −
EC(v))− (distG′ (t,∆V )−EC(t)) = distG′ (v, t)−EC(v)+EC(t) =
distG(v, t)− EC(v) + EC(t) ≥ 0 (according to Lemma S.14).
Proof of Lemma 5.11. There are two cases. (i) If EC′(t) = EC(t),
then by Lemma S.17, EC′(t) = distG′ (t, V ). For ∀w ∈ ∆V ,
EC′(w) ≥ distG′ (w, V ) = distG′ (w, t)+distG′ (t, V ) ≥ EC′(t), and
thus EC′(w) ≥ EC′(t). (ii) If EC′(t) ≥ EC(t), then by Lemma S.17,
EC′(t) = distG′ (t,∆V ) = |∆V |

2 (maximum distance to nodes on each
line). For ∀w ∈ ∆V , EC′(w) ≥ distG′ (w,∆V ) ≥ |∆V |

2 (distance to
nodes on the other line), and it follows EC′(w) ≤ EC′(t).
Proof of Lemma 5.12. If EC′(t) = distG′ (t,∆V ) = |∆V |

2 >

distG′ (t, V ), by Lemma S.18, EC′(v) = distG′ (v,∆V ) > EC(v),
and by Lemma S.15, EC′(v) = distG′ (v, t)+distG′ (t,∆V ) > EC′(t).
Then, when p = |∆V | > p′ = 2× EC(t), EC′(t) > EC′(v).
Proof of Theorem 5.6. By Lemmas 5.10-5.12 and Theorem 5.2.


