

# Manipulating Black-Box Networks for Centrality Promotion

Wentao Li<sup>1</sup>, Min Gao<sup>2</sup>, Fan Wu<sup>2</sup>, Wenge Rong<sup>3</sup>, Junhao Wen<sup>2</sup>, and Lu Qin<sup>1</sup> <sup>1</sup>AAII, FEIT, University of Technology Sydney, Australia <sup>2</sup>Chongqing University, China <sup>3</sup>Beihang University, China

# Graphs (Networks)



Q: Which node in the graph is the most important?

A: Centrality Measures

# Graphs (Networks)



Q: Which node in the graph is the most important?

A: Centrality Measures

**Degree**  $d(v_9) = 4$   $d(v_{10}) = 1$ 

Betweenness, Closeness, Eccentricity

### **Problem Statement**

#### Vital Nodes

Nodes with high centrality values

Superior position (get high citations)<sup>1</sup>

**Network Manipulation** 



target node t

become vital

# **Existing Solutions**

Idea: greedily choose some nodes to connect

#### Limitations

Unknown graph structure (Black-Box Network)

Ranking is promoted (Ranking Promotion)

Graph G, centrality value c(t)

closeness:  $c(v_4) = 1/23$ 

| G     | $V_1$          | V <sub>2</sub> | V <sub>3</sub> | $V_4$          | $V_5$          | V <sub>6</sub> | $V_7$          | $V_8$          | V <sub>9</sub> | V <sub>10</sub> |
|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|
| value | $\frac{1}{14}$ | $\frac{1}{22}$ | $\frac{1}{15}$ | $\frac{1}{23}$ | $\frac{1}{14}$ | $\frac{1}{12}$ | $\frac{1}{18}$ | $\frac{1}{18}$ | $\frac{1}{16}$ | $\frac{1}{24}$  |
| rank  | 2              | Î              | 4 🤇            | 9              | 2              | 1              | 6              | 6              | 5              | 10              |

 $rank(v_4) = 9$ : there are 8 nodes with values higher than  $v_4$ 



Update Graph G', centrality value c'(t)

 $c'(v_4) = 1/21$ 

| G'     | V <sub>1</sub> | V <sub>2</sub> | V <sub>3</sub> | $V_4$          | $V_5$          | $V_6$          | V <sub>7</sub> | $V_8$          | $V_9$          | <i>V</i> <sub>10</sub> |
|--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------|
| value' | $\frac{1}{14}$ | $\frac{1}{20}$ | $\frac{1}{15}$ | $\frac{1}{21}$ | $\frac{1}{14}$ | $\frac{1}{12}$ | $\frac{1}{18}$ | $\frac{1}{18}$ | $\frac{1}{16}$ | $\frac{1}{24}$         |
| rank'  | 2              | Î              | 4 (            | 9              | 2              | 1              | 6              | 6              | 5              | 10                     |

### Goal #1

### Goals

Black-Box Network

Insert nodes/edges around target node

Ranking Promotion





### Goal #2

#### Goals

Black-Box Network

Insert nodes/edges around target node

Ranking Promotion Non-trivial

How to choose a strategy for a centrality measure?

Do any of the strategies work for eccentricity promotion?

Multi-Point strategy: no

Double-Line strategy: yes



| G      | V <sub>1</sub> | V <sub>2</sub> | V <sub>3</sub> | V <sub>4</sub> | $V_5$         | V <sub>6</sub> | V <sub>7</sub> | V <sub>8</sub> | $V_9$         | <i>V</i> <sub>10</sub> |                       |                       |                       |
|--------|----------------|----------------|----------------|----------------|---------------|----------------|----------------|----------------|---------------|------------------------|-----------------------|-----------------------|-----------------------|
| value  | $\frac{1}{3}$  | $\frac{1}{4}$  | $\frac{1}{3}$  | $\frac{1}{4}$  | $\frac{1}{2}$ | $\frac{1}{2}$  | $\frac{1}{3}$  | $\frac{1}{3}$  | $\frac{1}{3}$ | $\frac{1}{4}$          |                       |                       |                       |
| rank   | 3              | 7              | 3              | 7              | 1             | 1              | 3              | 3              | 3             | 7                      |                       |                       |                       |
|        |                |                |                | $\smile$       |               |                |                |                |               |                        |                       |                       |                       |
| Gʻ     | $V_1$          | V <sub>2</sub> | V <sub>3</sub> | $V_4$          | $V_5$         | $V_6$          | V <sub>7</sub> | V <sub>8</sub> | $V_9$         | <i>V</i> <sub>10</sub> | <i>w</i> <sub>1</sub> | <i>W</i> <sub>2</sub> | <i>w</i> <sub>3</sub> |
| value' | $\frac{1}{3}$  | $\frac{1}{4}$  | $\frac{1}{3}$  | $\frac{1}{4}$  | $\frac{1}{2}$ | $\frac{1}{2}$  | $\frac{1}{3}$  | $\frac{1}{3}$  | $\frac{1}{3}$ | $\frac{1}{4}$          | $\frac{1}{4}$         | $\frac{1}{4}$         | $\frac{1}{4}$         |
| rank'  | 3              | 7              | 3 (            | 7              | 1             | 1              | 3              | 3              | 3             | 7                      | 7                     | 7                     | 7                     |

 $W_4$ 

4

7

## **Our Solution**

#### Goals

Black-Box Network

Insert nodes/edges around target node

Ranking Promotion Non-trivial

How to choose a strategy for a centrality measure?

#### Idea

When inserting nodes into G (by some strategy)

Centrality measures: two groups



 $v_8$ 

 $v_7$ 

 $(v_{10})$ 

 $v_5$ 

Value of target node can only be increased (or not changed), e.g., betweenness

*choose* a strategy to ensure target node: Maximum Value Increase (Maximum Gain Principle)

Value of target node can only be decreased (or not changed), e.g., eccentricity

*choose* a strategy to ensure target node: Minimum Value Decrease (Minimum Loss Principle)

# Maximum Gain Principle

### Goals

| Black-Box Network                                   | Insert nodes/e                | /edges around target node |                |                                                    |                                                              |                |                |                    |                |                |                |                 |                       |                                                                                                                                                    |                       |                       |  |
|-----------------------------------------------------|-------------------------------|---------------------------|----------------|----------------------------------------------------|--------------------------------------------------------------|----------------|----------------|--------------------|----------------|----------------|----------------|-----------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--|
| Ranking Promotion                                   | Ranking Promotion Non-trivial |                           |                | How to choose a strategy for a centrality measure? |                                                              |                |                |                    |                |                |                |                 |                       |                                                                                                                                                    |                       |                       |  |
| Maximum Gain Principle                              | Maximum Gain Principle        |                           |                |                                                    | Choose Multi-Point for betweenness promotion $(w_1)_{(w_2)}$ |                |                |                    |                |                |                |                 |                       |                                                                                                                                                    |                       |                       |  |
| Three Conditions                                    | Three Conditions              |                           |                | improved by overtaking a vertex in $G$             |                                                              |                |                |                    |                |                |                |                 |                       |                                                                                                                                                    |                       | -w <sub>3</sub>       |  |
| Target t has the maximum increase                   |                               |                           |                | vertar                                             |                                                              | verte          |                |                    |                |                |                | $v_5$           | $v_6$                 | $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ |                       | $)^{(w_4)}$           |  |
| t overtakes some v (after inserting $\sqrt{c}$      | nodes)                        |                           |                | inc                                                | rease=                                                       | 42             | $\sqrt{4-0}$   | <del>)</del> + 1 = | = 3 no         | odes           |                | $v_3$           | $v_9$                 | $)^{(\nu_2)}$                                                                                                                                      |                       |                       |  |
| node t has a value no smaller than inserted nodes w |                               |                           | V <sub>1</sub> | V <sub>2</sub>                                     | V <sub>3</sub>                                               | V <sub>4</sub> | V <sub>5</sub> | V <sub>6</sub>     | V <sub>7</sub> | V <sub>8</sub> | V9             | V <sub>10</sub> | 3                     | $\bigcirc$                                                                                                                                         |                       |                       |  |
|                                                     |                               |                           | 9.5            | 0                                                  | 8                                                            | 0              | 4              | 13                 | 0              | 0              | 8.5            | 0               |                       |                                                                                                                                                    |                       |                       |  |
|                                                     |                               |                           | 2              | 6                                                  | 4                                                            | 6              | 5              | 1                  | 6              | 6              | 3              | 6               |                       |                                                                                                                                                    |                       |                       |  |
|                                                     |                               | Gʻ                        | V <sub>1</sub> | V <sub>2</sub>                                     | V <sub>3</sub>                                               | V <sub>4</sub> | V <sub>5</sub> | V <sub>6</sub>     | V <sub>7</sub> | V <sub>8</sub> | V <sub>9</sub> | V <sub>10</sub> | <i>w</i> <sub>1</sub> | <i>W</i> <sub>2</sub>                                                                                                                              | <i>W</i> <sub>3</sub> | <i>W</i> <sub>4</sub> |  |
| Newly inserted W will not rank higher               | than t                        | value'                    | 15.5           | 0                                                  | 40                                                           | (42)           | 8              | 23                 | 0              | 0              | 12.5           | 0               | 0                     | 0                                                                                                                                                  | 0                     | 0                     |  |
|                                                     |                               |                           |                | 7                                                  | 2                                                            | 1              | 6              | 3                  | 7              | 7              | 5              | 7               | 7                     | 7                                                                                                                                                  | 7                     | 7                     |  |

## Minimum Loss Principle

#### Goals

| Black-Box Network      | Insert nodes/e | edges around target node                           |  |  |  |  |  |
|------------------------|----------------|----------------------------------------------------|--|--|--|--|--|
| Ranking Promotion      | Non-trivial    | How to choose a strategy for a centrality measure? |  |  |  |  |  |
| Maximum Gain Principle |                | Choose Multi-Point for betweenness promotion       |  |  |  |  |  |
| Minimum Loss Principle | -              | Choose Double-Line for eccentricity promotion      |  |  |  |  |  |
| Three Conditions       |                |                                                    |  |  |  |  |  |

Target t has the minimum loss

- t overtakes some v (after inserting certain nodes)
- node t has a value no smaller than inserted nodes w

### Experiments

#### Datasets

CA-HepPh (HEPP), 11204 nodes, 117619 edges

Maximum Gain Principle

Minimum Loss Principle

Multi-Point is effective for betweenness promotion

Double-Line is effective for eccentricity promotion



Target node improves the ranking by at least 3,000 on average (betweenness)



Target node improves the ranking by at least 2,000 on average (eccentricity)

Manipulating Black-Box Networks for Centrality Promotion

- Black-Box Networks
  - Assume that the graph structure is unknown
- Ranking Promotion
  - Maximum Gain or Minimum Loss Principles

### Thanks