
Reachability Labeling for Distributed Graphs

Junhua Zhang�, Wentao Li�, Lu Qin�, Ying Zhang�, Dong Wen§, Lizhen Cui‡, and Xuemin Lin§
�AAII, FEIT, University of Technology Sydney; §The University of New South Wales; ‡Shandong University

junhua.zhang@student.uts.edu.au; {wentao.li, lu.qin, ying.zhang}@uts.edu.au
dong.wen@unsw.edu.au; lxue@cse.unsw.edu.au; clz@sdu.edu.cn

Abstract—Real-world graphs are typically distributed across mul-
tiple data centers. When performing reachability queries on these
distributed graphs, reachability labeling methods ensure fast query
processing by using lightweight indexes. One of the best-known
labeling methods is TOL; however, TOL is a serial algorithm and
cannot handle distributed graphs. The main goal of this paper is
to design new labeling methods that can work in parallel while
producing the same index as TOL. To this end, we investigate
the limitation of TOL and thus propose a filtering-and-refinement
framework for index creation. This framework first obtains a super-
set of each vertex’s label sets and then eliminates the invalid
elements. Based on this framework, we design distributed labeling
algorithms and then use batch processing to improve efficiency.
Experimental results on real-world graphs show that the proposed
algorithms can index distributed graphs efficiently.

I. INTRODUCTION

Graphs are used widely to represent real-world entities and

their relationships [1]. As a common graph operation, reachability

query q(s, t) asks whether there is a path from vertex s to vertex

t. Reachability query plays an important role in applications such

as geographic navigation, Internet routing, and ontology reason-

ing [2]. Moreover, it is a building block for fields such as social

sciences, computational biology, and software engineering [3].

Due to the importance of reachability query processing, many

approaches have been proposed. These approaches are usually

classified into three categories [2]: 1) index-free approaches that

use the online search [4] (e.g., breadth-first search or depth-

first search) on graphs to determine whether one vertex can

reach another [5]; 2) index-assisted approaches that accelerate

the online search using auxiliary information [6]–[9]; 3) index-

only approaches that avoid the online search using an offline

index [10]–[14].

Most current approaches are centralized: they assume that

graphs reside in the main memory [15]. However, as the graph

size increases, real-world graphs are typically distributed in

multiple data centers [16]. When performing reachability queries

on distributed graphs, the pioneer work [15], [16] implements

the online search in a distributed manner for query processing.

However, the query latency can be high due to the need to

access distributed graphs during the query. This makes methods

that require the online search (i.e., index-free or index-assisted

approaches) undesirable, especially when a large number of

queries need to be processed.

To speed up query processing on distributed graphs, an alter-

native idea is to use index-only approaches — the index created

offline eliminates the dependence on the original graph during

querying [14]. Specifically, consider a graph G(V,E) with vertex

set V and edge set E, index-only approaches create an index that

assigns an out-label set Lout(v) and an in-label set Lin(v) for each

vertex v ∈ V . The out-label set Lout(v) of v contains vertices that

Wentao Li is the corresponding author.

v can reach, while the in-label set Lin(v) contains vertices that

can reach v. To answer the query q(s, t) between vertices s and

t, we only need to check whether there exists a common vertex

w between Lout(s) and Lin(t): the existence of w means that s
can reach t via w.

The state-of-the-art index-only methods is Total Order Labeling

(TOL) [14]. TOL assigns an order value to each vertex in a

graph, and then selects vertices for labeling in a decreasing

sequence of order values. When labeling a vertex v, TOL tries

to add v to the in-label/out-label sets of other vertices, using a

pruning operation. When all vertices have finished labeling, the

in-label/out-label sets generated by TOL for each vertex are used

as an index.

The pruning operation of TOL is a double-edged sword: TOL
reduces the index size by eliminating redundancy through the

pruning operation; however, each vertex v needs to wait for

vertices whose order values are higher than v to finish labeling,

thus making the pruning operation of v feasible. This means that

the execution of TOL is inherently serial. In other words, TOL
does not work properly on distributed graphs.

On the other hand, for a distributed graph, the index created

by TOL can efficiently support queries. This is because the index

of TOL is small enough that we can put it on a single machine

to achieve fast in-memory queries. For example, the index size

for graph SK (see Table V for graph’s details) with billions of

edges is bounded by 1 GB. The main purpose of our paper is to

design new labeling methods to handle a distributed graph while

obtaining the same index as TOL.

For this purpose, we delve into the labeling process of TOL. We

find that when labeling a vertex v, v joins the label sets of some

specific vertices. These vertices are defined as the backward
label set of v. The working process of TOL can be equated

to finding the backward label set for each vertex v. To find v’s

backward label set, we use a filtering-and-refinement framework,

thereby avoiding the pruning operation used by TOL. Specifically,

we first generate a super-set of the backward label set of v as

candidates, and then remove invalid elements from candidates to

obtain the actual backward label set. This novel framework gets

the same index as TOL while letting all vertices run in parallel.

Based on this framework, we design efficient labeling algorithms

and provide distributed implementations. In addition, we split

vertices into batches for labeling to further improve efficiency.

The contributions of this paper are summarized as follows.

• Analysis of TOL’s limitation (Section II). We investigate

TOL’s limitation, i.e., the pruning operation of TOL makes

parallel work challenging. This motivates the design of new

labeling methods.

• Novel labeling algorithms (Section III). We find that each ver-

tex’s labeling process can be replaced by finding the backward

label set for that vertex. We use a filtering-and-refinement

686

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00056

framework to find the backward label set of each vertex in

parallel. Using this framework, we propose new labeling algo-

rithms and provide implementations in a distributed system.

• Batch labeling optimization (Section IV). To further improve

the labeling algorithms’ efficiency, we split vertices into

batches and then construct the index in batches.

• Extensive empirical studies (Section VI). We conduct numer-

ous experiments to validate the efficiency of the proposed label-

ing algorithms. On medium-sized graphs, our algorithms can

outperform TOL by nearly an order of magnitude. Furthermore,

on billion-sized graphs, we can create indexes in half an hour

while TOL cannot.

II. PRELIMINARY

We first introduce some notations in Section II-A, then give the

labeling algorithm TOL in Section II-B, followed by the problem

statement in Section II-C. For ease of understanding, Table I lists

frequently used notations.

A. Notations

Given a directed graph G = (V,E) with n = |V | vertices

and m = |E| edges, we define the in-neighbor set NG
in(v) of a

vertex v ∈ V as NG
in(v) = {u|(u, v) ∈ E}; the out-neighbor

set NG
out(v) as NG

out(v) = {u|(v, u) ∈ E}. The in-degree dGin(v)
(resp. the out-degree dGout(v)) of v is the size of its in-neighbor set

(resp. out-neighbor set), i.e., dGin(v) = |NG
in(v)| (resp. dGout(v) =

|NG
out(v)|). The path between a vertex pair s, t ∈ V is defined as

pG(s, t) = (v1 = s, v2, · · · , vl = t), where (vi, vi+1) ∈ E, for

∀i ∈ [1, l− 1]. If there exists a path between s and t, then s can

reach t (denoted as s→ t).

Definition 1. The ancestors ANC(v) (resp. descendants
DES(v)) of a vertex v ∈ V contain all the vertices that can reach

v (resp. that v can reach). Vertex v is contained both in ANC(v)
and DES(v).

If the context is obvious, we drop G from notations. The

inverse graph G = (V,E) of a graph G(V,E) contains the

same vertices but with all edges reversed in direction (i.e.,

E = {(v, u)|(u, v) ∈ E(G)}).

Fig. 1: Graph G Fig. 2: Inverse Graph G

Example 1. Consider the graph G in Fig. 1, which has 11
vertices and 15 edges. For vertex v2, Nin(v2) = {v6} and

din(v2) = 1; Nout(v2) = {v1, v3, v4, v5} and dout(v2) = 4.

The vertex v2 can reach vertex v7 since there exists a path from

v2 to v7. For v2, ANC(v2) = {v2, v3, v4, v6} and DES(v2) =
{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}. The inverse graph G of

G is shown in Fig. 2.

The in-label/out-label sets over all vertices form index L, which

can be used to answer reachability queries in graph G.

Definition 2. The in-label set Lin(v) of v contains vertices that

can reach v, i.e., Lin(v) ⊆ ANC(v); the out-label set Lout(v) of

v contains vertices that v can reach, i.e., Lout(v) ⊆ DES(v).

TABLE I: Notations

Notation Meaning

G(V,E) graph

G(V,E) inverse graph
din(v), dout(v) in-degree, out-degree of v
ANC(v),DES(v) ancestors, descendants of v
Lin(v), Lout(v) in-label, out-label sets of v

L−in (v), L
−
out(v) backward in-label, out-label sets of v

DEShig(v) high-order descendants of v
BFSlow(v),BFShig(v) low-order, high-order vertices in trimmed BFS
IBFSlow(v) inverted list of v
[V1, V2, . . . , Vg] batch sequence of G

LVi
in , LVi

out batch in-label, out-label sets regarding Vi

TABLE II: The Index L

Vertex Lin Lout

v1 {v1} {v1}
v2 {v2} {v1, v2}
v3 {v2} {v1, v2}
v4 {v2} {v1, v2}
v5 {v1} {v1}
v6 {v2} {v1, v2}
v7 {v1} {v1}
v8 {v1, v8} {v8}
v9 {v1, v8, v9} {v9}
v10 {v2, v10} {v10}
v11 {v2, v11} {v11}

Given an index L, the largest label size, denoted as Δ, is

defined as Δ = maxv∈V (max(|Lin(v)|, |Lout(v)|)). To answer the

reachability query q(s, t) between s, t, we check whether there

are overlapping vertices between Lout(s) and Lin(t).

q(s, t) =

{
true, if Lout(s) ∩ Lin(t) �= ∅;
false, otherwise.

If the vertices in Lout(s) and Lin(t) are sorted by IDs, answering

q(s, t) takes O(|Lout(s)|+|Lin(t)|) time [14]. To ensure that index

L correctly answers all reachability queries on G, L needs to

satisfy the cover constraint.

Definition 3 (Cover Constraint). For ∀s, t ∈ V , Lout(s)∩Lin(t) �=
∅ if and only if (⇔) s→ t.

Example 2. Consider the graph G in Fig. 1, where Table II lists

an index L for G. For v2, Lout(v2) = {v1, v2} ⊆ DES(v2); for v3,

Lin(v3) = {v2} ⊆ ANC(v3). Since Lout(v2)∩Lin(v3) = {v2} �= ∅,
the query q(v2, v3) returns “true”.

B. Total Order Labeling

Many labeling methods have been proposed to create reach-

ability indexes for graphs [2], and one of the best-known is

Total Order Labeling (TOL). TOL works for a total of n rounds,

where one vertex is selected for labeling in each round. TOL
gives each vertex v an order ord(v) and selects the vertex

with the i-th largest order in round i. TOL uses degree to

determine the order and vertex IDs to break the tie: we can define

ord(v) = (din(v)+1)·(dout(v)+1)+ ID(v)
n+1 for a vertex v, where

ID(v) is the ID of v. There are other ways to define ord(v), but

this way is cheap to calculate and works well in practice [3], [17].

Example 3. Consider the graph G in Fig. 1, which has n = 11
vertices. For v1, ord(v1) = (din(v1) + 1) · (dout(v1) + 1)+ 1

12 =
12.08; for v10, ord(v10) = (din(v10)+1) · (dout(v10)+1)+ 10

12 =
2.83. Thus, ord(v1) > ord(v10), which means that the order of

v1 is higher than v10.

687

Algorithm 1: TOL
Input: Graph G(V,E)
Output: Index L

1 L1
in(v)← ∅, L1

out(v)← ∅, for each vertex v ∈ V ;
2 G1 ← G;
3 foreach i ∈ [1, n] do
4 vi ← the vertex whose order is the i-th largest;

5 DESGi(vi)← a vi-sourced BFS on Gi;

6 ANCGi(vi)← a vi-sourced BFS on Gi;

7 foreach w ∈ DESGi(vi) do
// pruning operation

8 if Li
out(vi) ∩ Li

in(w) = ∅ then
9 Li+1

in (w)← Li
in(w) ∪ {vi};

10 foreach w ∈ ANCGi(vi) do
// pruning operation

11 if Li
in(vi) ∩ Li

out(w) = ∅ then
12 Li+1

out (w)← Li
out(w) ∪ {vi};

13 Gi+1 ← Gi \ {vi};
14 return L = {Ln+1

in (v) ∪ Ln+1
out (v)|v ∈ V };

TOL Algorithm. Algorithm 1 shows how TOL creates an index

L for graph G. We first initialize the in-label set L1in(v) and out-

label set L1in(v) of all vertices v to an empty set (Line 1), and then

copy G to G1 (Line 2). Here, Liin(v) (resp. Liout) refers to the label

sets created by vertices [v1, v2, · · · , vi−1] of order higher than vi.
The labeling process works in n rounds (Line 3). In round i, the

vertex vi with the i-th largest order starts labeling (Line 4).

Labeling vi (Line 5-11). First, the descendants DESGi(vi) and

ancestors ANCGi(vi) of vi are obtained using the vi-sourced BFS

in Gi and Gi, respectively (Line 5-6). Then, vi is added to in-

label/out-label sets of other vertices when it passes a pruning
operation: for each vertex w ∈ DESGi(vi), when Liout(vi) and

Liin(w) have no overlapping, vi is appended to Liin(w) to form

Li+1
in (w) (Line 8); For each vertex w ∈ ANCGi(vi), when Liin(vi)

and Liout(w) have no overlapping, vi is appended to Liout(w) to

form Li+1
out (w) (Line 10). Then, vi and the incident edges are

removed from Gi (denoted as Gi \ vi) to form Gi+1 for the next

round (Line 11). After n rounds, the label sets of all vertices are

returned as index L (Line 12).

Example 4. Consider the graph G in Fig. 1. We show how

to create in-label sets for G, and out-label sets can be created

similarly. In round 1, G is copied to G1, and v1 (with the

highest order) is inserted into the in-label sets of its descendants

DESG1(v1) = {v1, v5, v7, v8, v9} in G1, as no pruning occurs.

Then, v1 and its adjacent edges are removed from G1 to form

G2. In round 2, v2 (with the second highest order) finds its

descendants DESG2(v2) = {v2, v3, v4, v5, v6, v7, v10, v11} in G2.

Then, v2 performs a pruning operation (Line 8 of Algorithm 1)

to test whether v2 is added to the in-label sets of vertices in

DESG2(v2). For example, since L2out(v2) ∩ L2in(v5) = {v1}, v2
is not inserted into L3in(v5) — pruning occurs. After pruning, v2
is inserted into the in-label sets of {v2, v3, v4, v6, v10, v11}. After

processing v11, TOL ends.

Limitation. TOL is a centralized algorithm [14], which means

that the graph needs to be stored on one machine for processing.

To make matters worse, TOL is non-trivial to be parallelized.

To illustrate why, we focus on the process of labeling vi. When

labeling vi, each vertex w has an in-label set Liin(w) and an out-

label set Liout(w) created by vertices [v1, v2, · · · , vi−1] of order

higher than vi. We collect the label sets of all vertices w and get

the index Li =
⋃

w∈V {Liin(w) ∪ Liout(w)} generated by vertices

of order higher than vi. The index Li is necessary when labeling

vi: L
i determines whether or not vi is added to the label set of

another vertex w ∈ V .

Lemma 1. For ∀w ∈ V , whether or not vi is in the label set of
w depends on Li, specifically,
• vi ∈ Lin(w)⇔ vi → w, Liout(vi) ∩ Liin(w) = ∅;
• vi ∈ Lout(w)⇔ w → vi, Liout(w) ∩ Liin(v) = ∅.
Proof. See Appendix.

Lemma 1 shows that Li is essential for labeling vi. However, Li

is generated only after vertices [v1, v2, · · · , vi−1] of order higher

than vi have completed labeling. This suggests that labeling vi
cannot begin until those vertices with higher orders have finished

labeling. Such a strong order dependency prevents TOL from

being parallelized. Motivated by this, we aim to design novel

labeling methods that can work in parallel while obtaining the

same indexes as TOL.

Remark. [14] maintains TOL’s index for dynamic graphs, but

we try to generate the same indexes as TOL for distributed graphs.

We consider maintaining indexes on distributed dynamic graphs

as future work.

C. Problem Statement

We plan to use a vertex-centric system [18] to implement the

proposed labeling methods. The vertex-centric system performs

the tasks in a super-step fashion [19]. In each super-step, each

active vertex v calls a user-defined function, compute(), to: 1)

compute based on v’s current state and the messages it received

in the previous super-step; 2) update v’s state; 3) send messages to

other vertices (for the next super-step); and 4) (optionally) vote v
to make it inactive. The whole computation terminates when there

are no messages in the system, or all vertices become inactive. To

avoid ambiguity, we use the term “vertex” to denote v as v ∈ V ,

and the term “node” to denote a computation unit in a cluster.

The problem addressed in this paper is:

Given a distributed graph G, design reachability label-

ing methods and implement them using a vertex-centric

system to create the index as TOL.

Throughout this paper, we do not assume that G is acyclic.

This treatment is also used in [16], [20]. We treat it this way for

two reasons: 1) our methods are general enough to handle both

acyclic and non-acyclic graphs; 2) it is non-trivial to obtain and

merge strongly connected components to make graphs acyclic in

a distributed environment.

III. DISTRIBUTED REACHABILITY LABELING

We present the concept of backward label sets in Section III-A,

and then propose a filtering-and-refinement framework to find

backward label sets in Section III-B. New labeling algorithms

based on this framework are designed in Section III-C, followed

by the algorithm implementation in a distributed system in

Section III-D.

A. TOL Revisited

As shown in Algorithm 1, TOL works in n rounds, where

a vertex v is selected for labeling in each round. The process

of labeling v is to use the pruning operation to determine some

688

TABLE III: The Backward Label Sets

Vertex L−in L−out
v1 {v1, v5, v7, v8, v9} {v1, v2, v3, v4, v5, v6, v7}
v2 {v2, v3, v4, v6, v10, v11} {v2, v3, v4, v6}
v3 ∅ ∅
v4 ∅ ∅
v5 ∅ ∅
v6 ∅ ∅
v7 ∅ ∅
v8 {v8, v9} {v8}
v9 {v9} {v9}
v10 {v10} {v10}
v11 {v11} {v11}

vertices (in v’s descendants/ancestors) such that v is added to their

label sets. We define these determined vertices as the backward

label set of v.

Definition 4. Given v ∈ V and index L of G, the backward
in-label set of v is L−in(v) = {w|v ∈ Lin(w)}; the backward
out-label set of v is L−out(v) = {w|v ∈ Lout(w)}.

Example 5. Consider the graph G in Fig. 1, where Table II shows

the index L. In Table III we list the backward in-label/out-label

sets for all vertices. For v2, L−in(v2) = {v2, v3, v4, v6, v10, v11}
since vertices {v2, v3, v4, v6, v10, v11} contain v2 in their in-label

sets; For v3, L−in(v3) = ∅ since no vertex contains v3 in its in-label

set. Also, labeling v2 is to add v2 to the in-label sets of vertices

in L−in(v2) and add v2 to the out-label sets of vertices in L−out(v2).

We re-describe the working process of TOL from the perspec-

tive of backward label sets: TOL chooses a vertex v to label in

each round. The process of labeling v is to determine the vertices

in backward in-label/out-label sets where v joins their labels.

Recall that TOL applies the pruning operation to determine its

backward label sets. According to the analysis in Section II, the

pruning operation causes TOL not to work in parallel. Therefore,

the main contribution of our paper is to replace the pruning

operation of TOL but still get the backward label sets of each

vertex v ∈ V . This allows all vertices to work in parallel and get

the same index as TOL.

Remark. Label sets and backward label sets are symmetric

concepts — v is in Lin(w) (resp. Lout(w)) implies that w is

in L−in(v) (resp. L−out(v)). For this reason, we aim to find the

backward label sets L−in(v) and L−out(v) of each vertex v to create

the index L. Also, since finding L−out(v) on G is similar to finding

L−in(v) on G, we only discuss how to obtain L−in(v) in the sequel.

The discussions for L−in(v) can be naturally extended to L−out(v).

B. Filtering-and-refinement Framework

To determine the backward label set L−in(v) for each vertex v
without relying on the pruning operation of TOL, we give the

condition for a certain vertex w to lie in L−in(v).

Theorem 1. For ∀v, w ∈ V , w ∈ L−in(v) ⇔ w ∈ DES(v) and v
is the highest-order vertex on all paths from v to w.

Proof. We prove w ∈ L−in(v), or equivalently v ∈ Lin(w).

• ⇐: If v is the highest-order vertex on all paths from v to w, then

there is no vertex u such that v → u→ w and ord(u) > ord(v).
Because TOL processes vertices in a non-increasing sequence

of vertex order, this means at the moment v starts labeling: 1)

w ∈ DESGi(v) since no vertex on a path from v to w can be

removed before labeling v; 2) Lout(v) ∩ Lin(w) = ∅ since no

vertex on a path from v to w finishes labeling. Therefore, by

Line 8 of Algorithm 1, v ∈ Lin(w). With similar logic, we can

prove that v ∈ Lout(w) if v is the highest-order vertex on all

paths from w to v.

• ⇒: If v ∈ Lin(w), let u �= v be the highest-order vertex on

all paths from v to w. This means that u’s order is the highest

on all sub-paths from v to u and from u to w. We reuse the

proof in ⇐: 1) u’s order is the highest on all u-w paths, then

u ∈ Lin(w); 2) u’s order is the highest on all v-u paths, then

u ∈ Lout(v). Thus, u ∈ Lout(v) ∩ Lin(w) �= ∅ when labeling v.

By Line 8 of Algorithm 1, v �∈ Lin(w), contradiction. �
Example 6. Consider the graph G in Fig. 1. For vertex v2, v3 ∈
L−in(v2) since v2 has the highest order on all paths from v2 to v3;

v5 �∈ L−in(v2) because v1, with order higher than v2, lies on a path

from v2 to v5.

Theorem 1 paves the way for obtaining L−in(v) of each vertex

v ∈ V in parallel. Specifically, by Theorem 1, w ∈ DES(v) is

a necessary condition for w ∈ L−in(v). In other words, DES(v)
is a super-set of L−in(v): L

−
in(v) ⊆ DES(v). To obtain L−in(v), we

need to remove invalid elements from DES(v). Thus, we define

the higher-order descendants of v.

Definition 5. The higher-order descendants of v, denoted as

DEShig(v), are vertices u ∈ DES(v) whose order is higher than

v, that is, DEShig(v) = {u|u ∈ DES(v), ord(u) > ord(v)}.
Theorem 1 states that only when v is the highest-order vertex

on all paths from v to w, then w is in L−in(v). In other words, if

there is a high-order vertex u ∈ DEShig(v) to reach w, w must not

be in L−in(v). Hence, we can use DEShig(v) to refine the super-set

DES(v) by removing invalid elements.

Based on this idea, we propose the filtering-and-refinement

framework to obtain L−in(v): the filtering phase generates the

super-set DES(v), and then invalid vertices that can be reached by

vertices in DEShig(v) are removed for refinement. The correctness

of this framework is given in Theorem 2.

Theorem 2. L−in(v) = DES(v)−⋃
u∈DEShig(v)

DES(u).

Proof. We denote the right-hand side of the equation by RHS
and verify that L−in(v) = RHS.

• L−in(v) ⊆ RHS: If w ∈ L−in(v)\RHS, then there are two possibil-

ities: 1) w �∈ DES(v), which contradicts w ∈ L−in(v) ⊆ DES(v);
2) w ∈ ⋃

u∈DEShig(v)
DES(u), but by Theorem 1, w �∈ L−in(v),

contradiction.

• RHS ⊆ L−in(v): If w ∈ RHS, then there is no vertex u on any

path from v to w for which ord(u) > ord(v). By Theorem 1,

w ∈ L−in(v). �
Example 7. Consider the graph G in Fig. 1. We

show how to obtain L−in(v3) of v3. We first find

DES(v3) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}; next

we get DEShig(v3) = {v1, v2}, and
⋃

u∈DEShig(v3)
DES(u) =

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}. Thus, L−in(v3) =
DES(v3)−

⋃
u∈DEShig(v3)

DES(u) = ∅.
C. Two Labeling Methods

C-1. Basic Labeling Method
If we apply Theorem 2 to obtain L−in(v) for each vertex v ∈ V ,

we need to perform a v-sourced breadth-first search (BFS) to

689

BFSlow(v3)

BFShig(v3)

Fig. 3: The v3-sourced Trimmed BFS

obtain DES(v) and DEShig(v) in the filtering phase, and then

perform |DEShig(v)| BFSs, one BFS for one vertex in DEShig(v)
in the refinement phase. The refinement phase requires a large

number of BFSs, rendering this solution inefficient. To improve

efficiency, we find that not all vertices in DEShig(v) are useful

for refinement. For example, for vertices a, b ∈ DEShig(v), b is

unnecessary when DES(b) is a subset of DES(a) — vertex a can

reach all descendants of b.
So, how to identify unnecessary vertices in DEShig(v)? A sim-

ple rule is that it is safe to delete vertex b if vertex a ∈ DEShig(v)
can reach b: a can reach all descendants of b. Based on this

rule, we propose to use a v-sourced BFS but block the expansion

branch upon meeting a vertex a ∈ DEShig(v), thus implicitly

deleting vertices b ∈ DEShig(v) that can be reached by a. We

denote this BFS as a trimmed BFS.

Algorithm 2: Trimmed BFS

Input: Graph G(V,E), v
Output: BFSlow(v), BFShig(v)

1 queue Q← ∅;
2 status(u)← ? , for all vertices u ∈ V ;
3 push v → Q and BFSlow(v);
4 status(v)← →;

5 while Q is not empty do
6 u← pop from Q;
7 foreach w ∈ Nout(u) do
8 if status(w) �= ? then continue;
9 if ord(w) < ord(v) then

10 status(w)← → , push w → Q and BFSlow(v);
11 else

// block the expansion via w
12 push w → BFShig(v);
13 return BFSlow(v),BFShig(v);

Trimmed BFS. Algorithm 2 describes the v-sourced trimmed

BFS. We initialize an empty queue Q and set the status of all

vertices to unvisited (denoted as ?) (Line 1-2). Then, v is inserted

into Q and BFSlow(v), and the status of v is set to visited (denoted

as →) (Line 3-4). Afterward, we pop a vertex u from Q and

check each neighbor w of u (Line 6-7). If w is visited before,

we do nothing (Line 8). Otherwise, depending on the order of w,

we have two cases: 1) if w is lower in order than v, we continue

expanding via w by setting the status of w as visited and inserting

w both in Q and BFSlow(v) (Line 9-10); 2) otherwise, we block

the expansion via w and insert w into BFShig(v) (Line 12). When

the queue Q is empty, the BFS terminates, and BFSlow(v) and

BFShig(v) are returned.

Lemma 2. The time cost of Algorithm 2 is O(|E|+ |V |).
Example 8. Fig. 3 shows the v3-sourced trimmed BFS. First, v3 is

inserted into both Q and BFSlow(v3). Then, v3 is popped from Q,

and for v3’s out-neighbors {v1, v4, v10}: v4 and v10 are inserted

into both BFSlow(v3) and Q because they are of lower order than

v3; the expansion via v1 is pruned since ord(v1) > ord(v3), and

v1 is inserted into BFShig(v3). Then, v4 is popped from Q, and

v4’s out-neighbors {v6, v11} are examined. The BFS terminates

when Q is empty, and we get BFSlow(v3) = {v3, v4, v10, v6, v11},
BFShig(v3) = {v1, v2}.
Modified Framework. During the trimmed BFS sourced from

v, we obtain BFSlow(v) (vertices visited by BFS and of order

lower than v) and BFShig(v) (vertices with higher order that block

the expansion). Using BFSlow(v) and BFShig(v), we optimize the

original filtering-and-refinement framework.
Refinement. We first show that in the refinement phase, BFShig(v)
can replace DEShig(v) since vertices in BFShig(v) reach all the

descendants of vertices in DEShig(v).

Lemma 3.
⋃

u∈BFShig(v)
DES(u) =

⋃
u∈DEShig(v)

DES(u).

Proof. Let LHS be
⋃

u∈BFShig(v)
DES(u) and RHS be⋃

u∈DEShig(v)
DES(u).

• LHS ⊆ RHS follows from the fact BFShig(v) ⊆ DEShig(v).

• RHS ⊆ LHS: If ∃s ∈ RHS \ LHS, s ∈ RHS implies there is a

path from v to s containing some vertex w ∈ DEShig(v). On all

paths from v to s, we collect the inner vertices in DEShig(v) and

insert them in set S (S is not empty as w ∈ DEShig(v) is such a

vertex). We choose the vertex u ∈ S with the smallest distance

to v: there is no other higher-order vertex on the v-u path. By

Algorithm 2, u ∈ BFShig(v). Thus, s ∈ ⋃
u∈BFShig(v)

DES(u) =
LHS, contradiction. �

Example 9. Consider the graph G in Fig. 1. For v3,

BFShig(v3) can replace DEShig(v3) for refinement since

BFShig(v3) = {v1, v2} reaches all descendants of vertices in

DEShig(v3):
⋃

u∈BFShig(v3)
DES(u) =

⋃
u∈DEShig(v3)

DES(u) =

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}.
Filtering. Next, we show BFSlow(v) is a super-set of L−in(v),
meaning that BFSlow(v) can replace DES(v) for filtering.

Lemma 4. L−in(v) ⊆ BFSlow(v).

Proof. Suppose there is s ∈ L−in(v) \ BFSlow(v), then there must

be a path from v to s through a high-order vertex u ∈ BFShig(v).
By Theorem 1, s �∈ L−in(v), contradiction.

Example 10. Consider the graph G in Fig. 1. For v3, BFSlow(v3)
can replace DES(v3) for filtering, because BFSlow(v3) =
{v3, v4, v6, v10, v11} includes all vertices in L−in(v3) = ∅.
Basic Labeling Method. Lemma 4 shows that BFSlow(v) is a

super-set of L−in(v), while Lemma 3 shows that BFShig(v) is

sufficient to eliminate invalid elements not in L−in(v). Thus, we

give the basic labeling method for labeling v ∈ V .

Step 1. In the filtering phase, we use a v-sourced BFS to find

BFSlow(v) and BFShig(v);
Step 2. In the refinement phase, we perform a BFS for each

vertex in BFShig(v).
Step 3. Return BFSlow(v)−

⋃
u∈BFShig(v)

DES(u) as L−in(v).

Combing Lemma 3, Lemma 4, and Theorem 2, the correctness

of this method is given in Theorem 3.

Theorem 3. L−in(v) = BFSlow(v)−
⋃

u∈BFShig(v)
DES(u).

690

C-2. Improved Labeling Method
Compared with the framework given in Theorem 2, the basic

method based on Theorem 3 reduces the number of BFSs needed

in the refinement phase from |DEShig(v)| to |BFShig(v)|. But the

number |BFShig(v)| may still be very large. Therefore, can we

avoid using a large number of BFSs in the refinement phase?

To answer this question, we revisit the refinement phase of the

basic method (i.e., Lemma 3): when labeling v, w is eliminated

when a vertex in BFShig(v) can reach w. We focus on a specific

vertex u ∈ BFShig(v), which has the highest order on paths from

v to w: when performing a u-sourced trimmed BFS in G, u can

reach w, so w is in BFSlow(u)
1; when performing a u-sourced

trimmed BFS in the inverse graph G, u can reach v, so v is in

BFSGlow(u). Thus, by examining whether there exist vertices u of

order higher than v such that w ∈ BFSlow(u) and v ∈ BFSGlow(u),
we can eliminate w to complete the refinement without using any

BFSs: the existence of higher-order vertices u on the v-w paths

implies that w can be eliminated.

Example 11. Consider the graph G in Fig. 1. For v3 in G, v4
can be eliminated because ∃v2 ∈ BFShig(v3) s.t., 1) in G (Fig. 1),

v2-sourced BFS visits v4 and hence v4 ∈ BFSlow(v2); 2) in G

(Fig. 2), v2-sourced BFS visits v3, and hence v3 ∈ BFSGlow(v2).

Improved Refinement. Based on the above idea, in the refine-

ment phase of labeling v, to check whether some vertex w ∈
BFSlow(v) should be removed, we need to check if there exists

u ∈ BFShig(v) such that w ∈ BFSlow(u) and v ∈ BFSGlow(u).
Determining w ∈ BFSlow(u) can be done intuitively in G, since

BFSlow(u) is known; but determining v ∈ BFSGlow(u) is not so

simple, since the information on G needs to be used.

To make it feasible to determine v ∈ BFSGlow(u), we create an

inverted list IBFSlow(v) for vertex v ∈ V .

Definition 6. If v is visited by the u-sourced trimmed BFS in G,

vertex u is in the inverse list IBFSlow(v) of v, i.e., IBFSlow(v) =

{u|v ∈ BFSGlow(u)}.
With IBFSlow(v), we can eliminate w by Lemma 5.

Lemma 5. For a vertex w ∈ BFSlow(v), w �∈ L−in(v) if ∃u ∈
IBFSlow(v), and w ∈ BFSlow(u).

Proof. A vertex u ∈ IBFSlow(v) with w ∈ BFSlow(u) means

there is a higher-order vertex u on the path from v to w. Then,

w �∈ L−in(v) by Theorem 1.

Improved Labeling Method. With the refinement given in

Lemma 5, we give an improved labeling method for labeling v.

Step 1. In the filtering phase, we use a v-sourced BFS in G to

find BFSlow(v) and BFShig(v), for ∀v ∈ V ;

Step 2. We use a v-sourced BFS in G to find BFSGlow(v), and

then get IBFSlow(v) by Definition 6, for ∀v ∈ V ;

Step 3. In the refinement phase, if ∃u ∈ IBFSlow(v), and w ∈
BFSlow(u), the vertex w can be eliminated;

Step 4. Return the non-eliminated vertices as L−in(v).
Combing Lemma 5 and Theorem 3, the correctness of this

method is given below.

Theorem 4. L−in(v) = BFSlow(v) − S, where S = {w|w ∈
BFSlow(v), ∃u ∈ IBFSlow(v), w ∈ BFSlow(u)}.

1Without ambiguity, BFSlow(u) and BFSGlow(u) refers to the same thing.

Note that in Step 2 of the improved labeling method, we need

a v-sourced trimmed BFS on G to obtain L−in(v). This step does

not introduce additional costs because BFSGlow(v) is needed to

obtain L−out(v). In other words, only trimmed BFSs are required

to obtain both L−in(v) and L−out(v).
So far, in addition to finding the backward label sets using

the framework given in Theorem 2, we have proposed a basic

method based on Theorem 3 and an improved method based on

Theorem 4. We give in Table IV the number of BFSs required in

the filtering and refinement phases for each method.

TABLE IV: The Comparison Between Labeling Methods

Method Filtering Refinement
Theorem 2 1 |DEShig(v)|
Theorem 3 (Basic) 1 |BFShig(v)| ≤ |DEShig(v)|
Theorem 4 (Improved) 1 1

D. Distributed Implementation

To handle distributed graphs, we implement the improved

labeling method using a vertex-centric system, which is denoted

as DRL. We omit the distributed implementation of the basic

labeling method, as this can be implemented in a similar way.

Algorithm 3: Compute() for DRL

1 Data: in-msgs← messages from in-neighbors;
2 out-msgs← messages to out-neighbors;
3 if super-step = 1 then

// w is vertex to perform computations
4 w = vertex id();
5 w.status(z)← ? , for each vertex z ∈ V ;
6 w.status(w)← →;

// message format:{ID, order}
7 message ← {w, ord(w)};
8 send message to out-neighbors;
9 foreach message ∈ in-msgs do

// v is the source to do trimmed BFS
10 v ← message.ID;
11 ord(v)← messge.order;
12 if w.status(v) = → then continue;

13 if ord(v) > ord(w) then
14 if Check(v, w)=true then continue;
15 w.status(v)← →;

16 message ← {v, ord(v)};
17 send message to out-neighbors;

// works on G
18 insert v into IBFSlow(w);
// only run after the final super-step

19 foreach v, s.t., w.status(v) = → do
20 if Check(v, w)=true then w.status(v)← ? ;

21 Procedure Check(v, w)
22 foreach u ∈ IBFSlow(v) do
23 if w.status(u) = → then return true
24 return false

Algorithm. Algorithm 3 describes DRL, where the compute()
function is executed on each vertex w ∈ V in super-steps. We

record the visited status of w using a status array2 w.status.
Specifically, if the value of w.status(v) is ? , then w is not visited

by the vertex v; if the value is →, then w is visited by v. By

reading the values of status arrays, the backward in-label sets of

all vertices can be obtained.

2In the implementation, the hash table can be used to replace the array because
of the sparsity of the array.

691

In the first super-step (Line 3), vertex w initializes its status

array by assigning the unvisited status ? to all vertices (Line 5),

except for w itself, which is assigned as → (Line 6). Then, w
sends the message containing its vertex ID (w) and vertex order

(ord(w)) to out-neighbors (Line 7-8). In subsequent super-steps,

once vertex w receives the message from in-neighbors (Line 9),

w extracts vertex ID v (Line 10) and order ord(v) (Line 11) of

the message. If w.status(v) is →, we do nothing as v visited w
before (Line 12).

If w.status(v) is ? and the order v is higher than w, we

continue the v-sourced trimmed BFS via w (Line 13). We mark

the status of w.status(v) as → (Line 15), and we send the

message {v, ord(v)} to w’s out-neighbors to continue the v-

sourced BFS. Also, on the inverse graph G, if v can reach w,

then v is inserted in IBFSlow(w) (Line 18). Note that we will call

the procedure Check(v, w) (Line 21-24) for an expansion pruning

(Line 14): if IBFSlow(v) contains a vertex u that can reach w, it

follows from Lemma 5 that w is not in L−in(v), and we prune the

expansion of v-sourced BFS via w.

In the final super-step, we check for w the vertices v for which

w.status(v) is →: if the procedure Check(v, w) returns true, we

reset w.status(v) to ? (Line 19-20). After this check, the vertices

w for which w.status(v) is → form the backward in-label set

L−in(v) of v. Finally, we can collect the backward label sets of

each vertex on one machine to obtain an index the same as TOL
to support reachability queries.

Analysis. We give the correctness analysis of DRL, i.e., the

vertices w whose w.status(v) value is → form L−in(v) of v.

Theorem 5. Given a graph G and a vertex v, L−in(v) =
{w|w.status(v) = →} for Algorithm 3.

Proof. We denote RHS by {w|w.status(v) = →} and we prove

L−in(v) = RHS.

• RHS ⊆ L−in(v): w.status(v) = → means that v can reach w and

ord(w) < ord(v). Then we verify that there are no higher-order

vertices on any path from v to w, thus deriving w ∈ L−in(v)
by Theorem 1. Suppose there are high-order vertices on paths

from v to w, we choose the highest-order vertex u. Since u’s

order is the highest on all v-w paths, u can reach v in G,

thus u ∈ IBFSlow(v); u can reach w in G, thus w.status(u) =
→. So the procedure Check(v,w) will set w.status(v) = ? ,

contradiction.

• L−in(v) ⊆ RHS: Suppose there exists a vertex w ∈ L−in(v) and

w.status(v) = ? , then there are two cases: 1) if v cannot reach

w, then w �∈ L−in(v) by Theorem 1, contradiction; 2) there exists

a higher-order vertex u in IBFSlow(v) to block the expansion

branch from v to w to set w.status(v) to ? (Line 14) or to

reset w.status(v) to ? (Line 19-20), which contradicts with

Theorem 1. �
We then analyze the computation and communication costs.

Lemma 6. The computation cost of labeling a vertex v ∈ V using
Algorithm 3 is O(|E|+ |IBFSlow(v)| · |V |), where |IBFSlow(v)| is
the inverted list size of v.

Proof. The time required to perform a v-sourced trimmed BFS

is O(|E|). Also, Algorithm 3 triggers at most |V | times of the

Check() procedure for v, each requiring |IBFSlow(v)| time.

Lemma 7. The communication cost of labeling a vertex v ∈ V
using Algorithm 3 is O(|E|+ |IBFSlow(v)|).

Proof. Each vertex needs to send/read a message to its neighbors

at most once for labeling a certain vertex v. In addition, we need

to share IBFSlow(v) to implement the Check() procedure. Hence,

the communication cost is
∑

v∈V dout(v) +
∑

v∈V din(v) +
|IBFSlow(v)| = |E|+ |IBFSlow(v)|.

Remark. Although each vertex v needs to share its inverted

list IBFSlow(v), the size of IBFSlow(v) is pretty small (empirical

studies show that the average size of IBFSlow(v) of each vertex v
is less than one), so the communication overhead associated with

sharing the inverted list is not significant. The efficiency of DRL
is validated in Section VI.

IV. BATCH LABELING OPTIMIZATION

DRL creates backward label sets for all vertices in parallel.

However, DRL misses the opportunity provided by the serial

execution of TOL — the already processed high-order vertices

strongly prune the search space when labeling the current vertex.

As a remedy, we further improve the labeling efficiency by

splitting vertices into batches to trade-off between pruning power

and parallelization.

Batch Sequence. We split the vertices into a batch sequence

for batch labeling: we label all the vertices within a batch

simultaneously, while vertices in different batches perform the

labeling process sequentially.

Definition 7. [V1, V2, . . . , Vg] is a batch sequence when

•
⋃

i∈g Vi = V and Vi ∩ Vj = ∅, for ∀i �= j;

• for vertex u ∈ Vi and vertex v ∈ Vj with i < j, it must be

ensured that ord(u) > ord(v).

The batch sequence [V1, V2, . . . , Vg] is a graph partition since

it disjointly covers all vertices. Also, the vertices with high order

are placed before the vertices with low order in the sequence.

When the batch size |Vi| (1 ≤ i ≤ g) is fixed to one, we get

|V | batches of vertices for labeling. This fully serial execution

is howTOL works. When the batch size is fixed to |V |, we get

1 batch of vertices for labeling. This fully parallel execution is

how DRL works. By setting the batch size flexibly, we make a

trade-off between TOL and DRL.

To obtain a valid batch sequence, we need two parameters:

an initial batch size variable b (ranging from 1 to |V |) and an

increment factor k. The specific procedure is given below.

Step 1. Sort vertices V in a non-increasing order of ord values,

and then copy sorted vertices into the set S;

Step 2. In iteration i, remove b vertices with the highest order

from S to form Vi (i.e., S ← S \ Vi), and then multiply

b by k for the next iteration (i.e., b← b · k);

Step 3. Stop at round g + 1 when S = ∅ and return

[V1, V2, · · · , Vg]; otherwise, increase i by 1 and go to

Step 2.

The number of vertices in the last batch Vg may not exceed b.

We set the values of both b and k to 2. The effect of b and k on

the labeling efficiency is discussed in Section 5.

Example 12. Consider the graph G in Fig. 1. Suppose b = 2 and

k = 2. In the first round (b = 2), we get V1 = {v1, v2}; in the

second round (b = 4), we get V2 = {v3, v4, v5, v6}; in the third

round (b = 8), we get V3 = {v7, v8, v9, v10, v11}. [V1, V2, V3] is

a batch sequence of G.

692

Algorithm 4: Compute() for DRLb

1 Data: in-msgs← messages from in-neighbors;
2 out-msgs← messages to out-neighbors;
3 Input: Vi;
4 if super-step = 1 then

// w is vertex to perform computations
5 w = vertex id();

6 if w /∈ Vi or LVi
out(w) ∩ LVi

in (w) �= ∅ then Return;
7 the same as Line 5-8 of Algorithm 3;

8 broadcast LVi
out(w) and LVi

in (w) to all computation nodes;
9 for each message ∈ in-msgs do

// v is source to do trimmed BFS
10 v ← message.ID;
11 ord(v)← messge.order;

12 if LVi
out(w) ∩ LVi

in (w) �= ∅ then Continue;
13 the same as Line 12-20 in Algorithm 3;

// only run after the final super-step

14 L
Vi+1

in (w)← {v|w.status(v) = →};

Fig. 4: The Illustration of Batch Labeling

Batch Label Sets. Since we process vertices in batches, the

vertices in previous batches [V1, V2, · · · , Vi−1] completed labeling

before the current batch Vi begins. We define label sets generated

by vertices in batches [V1, V2, · · · , Vi−1] as batch label sets

regarding Vi.

Definition 8. Given the batch Vi, the batch in-label set LVi

in (w) of

a vertex w ∈ V is defined as LVi

in (w) = {u|u ∈ Lin(w), ord(u) >
ord(Vi)}; the batch out-label set LVi

out(w) of a vertex w ∈ V is

defined as LVi
out(w) = {u|u ∈ Lout(w), ord(u) > ord(Vi)}, where

ord(Vi) = max{ord(v)|v ∈ Vi}.
Similar to TOL, we can use the batch label sets to perform the

pruning operation during the current batch, thereby optimizing

the efficiency of DRL.

Example 13. Consider the graph G in Fig. 1. Suppose v1 and v2
finished labeling in the previous batch V1 and only v3 is in current

batch V2. Before V2 starts labeling, the batch in-label set LV2

in (v9)
of v9 is {v1}: v1 in Lin(v9) = {v1, v8, v9} has a higher order than

v3; the batch out-label set LV2
out(v9) of v9 is ∅: Lout(v9) = {v9}

has no vertex of higher order than v3.

Algorithm. We incorporate the idea of batch labeling into DRL
and implement it on a vertex-centric system to obtain algorithm

DRLb (Algorithm 4). DRLb resembles DRL (Algorithm 3), and we

only list the differences. First, only vertices in the current batch Vi

are selected for labeling (Line 6); Also, if there is a higher-order

vertex on the path from w to w (LVi
out(w) ∩ LVi

in (w) �= ∅), w is

pruned (note that the graph is unnecessary to be acyclic) (Line 6).

The batch label sets are then sent to all computation nodes

(Line 8). The batch label sets are also used for pruning in Line 12.

Then, at the end of batch Vi, vertices v with w.status(v) = →
form batch in-label set of w for the next round (Line 14).

Example 14. Fig. 4 shows how batch labeling works. When

labeling v3 in the current batch Vi, as LVi

in (v3) = {v2} intersects

with LVi
out(v3) = {v1, v2}, v3 is pruned immediately — the search

space for labeling v3 is dramatically reduced.

Analysis. We analyze the correctness of DRLb.

Theorem 6. Given a graph G and a vertex v, L−in(v) =
{w|w.status(v) = →} for Algorithm 4.

Proof. We denote {w|w.status(v) = →} by RHS and prove that

L−in(v) = RHS.

• RHS ⊆ L−in(v): Suppose there is a vertex w with w.status(v) =
→ but w �∈ L−in(v), w �∈ L−in(v) implies 1) v �→ w, which

shows that w.status(v) = ? , or 2) there is a vertex with order

higher than v on a path from v to w, so we select the highest-

order vertex s. If s is in the previous batches and the current

batch is denoted as Vi, since there are no vertices to prune

s, s ∈ LVi
out(v) and s ∈ LVi

in (w). Hence, w.status(v) = ?

by Line 12 of Algorithm 4; or s is in the current batch, then

w.status(v) = ? by the correctness of DRL, contradiction.

• L−in(v) ⊆ RHS: We prove this by induction on the batch

number. When v ∈ V1, since no pruning occurs, then DRLb
is correct by the correction of DRL. Suppose Vi−1 finishes

labeling and DRLb is correct, we prove DRLb is correct for

v ∈ Vi. Since w ∈ L−in(v), then v can reach w and no pruning

occurs at Line 12 of Algorithm 4. Therefore, by the correction

of DRL, DRLb is correct for v ∈ Vi. �
We then provide its computation and communication costs.

Lemma 8. The computation cost of labeling a vertex v ∈ V
using Algorithm 4 is O(|E′| + (|IBFSlow(v)| + Δ) · |V |), where
E′ ⊆ E, and Δ is the largest label size.

Proof. For each vertex v, Algorithm 4 needs to explore the

reduced search space (denoted as E′, E′ ⊆ E) due to the pruning

operation. Moreover, Algorithm 4 requires at most |V | times of

Check() procedure (each costing O(|IBFSlow(v)|)) and |V | label

queries (each costing O(Δ)).

Lemma 9. The communication cost of labeling a vertex v ∈ V
using Algorithm 4 is O(|E′|+ |IBFSlow(v)|+Δ).

Proof. The cost comes from: 1) sharing label sets with other com-

putation nodes, which incurs O(Δ) cost; 2) sending IBFSlow(v)
for refinement; 3) reduced search space E′.

Remark. Compared to DRL (Algorithm 3), DRLb (Algorithm 4)

requires additional costs to share and query batch label sets.

However, empirical studies in Section VI show that the benefit

of reducing the search space from E to E′ ⊆ E outweighs the

additional overhead.

V. RELATED WORK

Index-free Approaches. The online search [16] such as breadth-

first [21] or depth-first search [22] can be used to process

reachability queries. However, because the graph needs to be used

at the query time, the query latency can be large.

Index-assisted Approaches. Index-assisted methods speed up the

online search by using auxiliary structures. The auxiliary struc-

tures can be subgraphs [6], multiple intervals [7], independent

permutations [8], bloom filters [9], or partial label sets [15]. One

of the best-known approaches in this category is BFL [9]. The

basic idea of BFL is that if vertex s can reach vertex t, then s
can reach all descendants DES(t) of t, i.e., DES(t) ⊆ DES(s).
Through a Bloom filter, BFL maps the descendants DES(v) of

693

each vertex v to a subset as the out-label set of v [23]. At query

time, the labels alone can be used to determine that s cannot

reach t: if t’s out-label set is not fully contained in s’s out-label

set, then DES(t) �⊆ DES(s) and thus s �→ t. However, if s can

reach t, then BFL needs to perform a graph search to report the

answer. Similarly, BFL uses the Bloom filter to map each vertex’s

ancestors to generate its in-label set. For BFL, as the index cannot

answer all queries, the graph needs to be loaded into memory at

query time (whereas the index-only approach does not need to rely

on the graph at query time). BFL is undesirable for distributed

graphs because (1) its index construction strictly follows the post-

order of depth-first search (DFS), and thus requires performing

distributed DFS, and (2) it needs to traverse distributed graphs

during query processing. These two operations incur high costs

in the distributed environment, as will be validated in Section VI.

Index-only Approaches. Reachability relations between all pairs

of vertices can be stored as an index using a transit closure

(TC) in O(n2) space. Due to its huge size, TC is compressed

by intervals [24], bit vectors [25], or other structures (e.g., a

spanning tree and additional intervals [26], multiple chains [27],

and a path-tree [28]). The limitation of TC is the huge space

required. Another type of index is created by reachability labeling

methods. Reachability labeling methods were pioneered by Cohen

et al. [10]. After that, [11] provided a divide-and-conquer strategy

for labeling; geometric-based and graph partition-based labeling

methods were proposed in [12] and [13], respectively. The state-

of-the-art index-only approach TOL is introduced in Section II.

Parallelized Distance Labeling. Parallelized distance labeling

methods are proposed for shortest distance queries. Li et al. [29]

designed a parallel distance labeling algorithm for unweighted

graphs; Lakhotia et al. [30] provided a distributed distance

labeling algorithm for weighted graphs. For distance labeling, as

shown in [29], v is inserted into the label set of w if and only

v is the highest-order vertex on all shortest paths from v to w.

But according to Theorem 1 in Section III, v is inserted into the

label set of w if and only if v is the highest-order vertex on

all paths from v to w. Current distance labeling methods cannot

find a higher-order vertex not on the shortest path, thus resulting

in much larger indexes than the reachability labeling methods.

Therefore, there is still a need to investigate new techniques for

parallelizing reachability labeling, which is the focus of this paper.

VI. EXPERIMENTS

A. Settings

Algorithms. We aim to propose distributed labeling algorithms

that produce the same index as TOL. Our methods include:

• DRL (Algorithm 3), a distributed labeling algorithm based on

Theorem 4.

• DRL−, a basic labeling algorithm based on Theorem 3. Since

its distributed implementation is similar to DRL, we omit its

implementation details.

• DRLb (Algorithm 4), a distributed algorithm obtained by ap-

plying batch labeling to DRL.

Datasets. The experiments were conducted on 18 real-world

directed graphs that are widely used in recent work related to

reachability queries [3], [6], [31]. The properties of the graphs

are shown in Table V. The largest graph has more than 3.7 billion

edges. All the datasets are from Stanford Large Network Dataset

TABLE V: Datasets

Name Dataset |V | |E| Type

WEBW Web-wikipedia 1,864,433 4,507,315 Web
DBPE Dbpedia 3,365,623 7,989,191 Knowledge
CITE Citeseerx 6,540,401 15,011,260 Citation
CITP Cit-patent 3,774,768 16,518,947 Citation
TW Twitter 18,121,168 18,359,487 Social
GO Go-uniprot 6967956 34,770,235 Biology
SINA Soc-sinaweibo 58,655,849 261,321,071 Social
LINK Wikipedia-link 13,593,032 437,217,424 Web
WEBB Webbase-2001 118,142,155 1,019,903,190 Web
GRPH Graph500 17,043,780 1,046,934,896 Synthetic
TWIT Twitter-2010 41,652,230 1,468,365,182 Social
HOST Host-linkage 57,383,985 1,643,624,227 Web
GSH Gsh-2015-host 68,660,142 1,802,747,600 Web
SK Sk-2005 50,636,154 1,949,412,601 Web
TWIM Twitter-mpi 52,579,682 1,963,263,821 Social
FRIE Friendster 68,349,466 2,586,147,869 Social
UK Uk-2006-05 77,741,046 2,965,197,340 Web
WEBS Webspam-uk 105,896,555 3,738,733,648 Web

Collection3 [32], Koblenz Network Collection4 [33], Laboratory

for Web Algorithms5 [34], [35], Network Data Repository6 [36],

and the links in [37]. Note that, to verify the generality of our

algorithms for processing distributed graphs, we do not transform

the graphs into acyclic graphs, but build the indexes directly on

the original graphs.

Environment. We implement all algorithms in C++ and com-

pile them using GNU GCC 4.8.5. Our distributed algorithms

(DRL−,DRL,DRLb) are designed to run on a vertex-centric

system. To eliminate the dependence on specific features provided

by the vertex-centric system, we implement this system ourselves

using MPI. We map graph vertices to different computation nodes

via vertex IDs to make it suitable for distributed setups.

Our algorithms are executed on a cluster of 32 computation

nodes — each node contains an Intel Xeon 2.7 GHz CPU, 32 GB

main memory, and runs Linux (Red Hat Linux 4.8.5, 64 bits). In

contrast, centralized algorithms such as TOL [14] and BFL [9]

are executed on only one node with the same system settings. If

not explicitly stated, we only run one thread on each computation

node. We set the cut-off time to 2 hours. If the algorithm runs

out of memory or cannot complete the computation within the

cut-off time, the execution time is marked as “INF”.

B. Comparison with Competitor Methods

Exp 1: Comparison with TOL. TOL is an index-only algo-

rithm [14]. To illustrate the necessity of the proposed methods,

we compare our best method DRLb with TOL. The results of

the comparison are given in Table VI. When a method cannot

complete index creation because it exceeds the memory limit, we

mark its results with the notation “-” in the table.

On index time. The time of DRLb includes both computation time

and communication time. On a medium-sized graph that can be

accommodated by a single computation node, DRLb’s index time

can be at most 9.37 times faster than TOL. Note that TOL is a

centralized algorithm and cannot handle distributed graphs. When

a single computation node cannot accommodate a graph (e.g.,

WEBS), TOL fails to work. In contrast, DRLb can index all graphs

within half an hour. This shows that our method can efficiently

handle large-scale graphs that are beyond the ability of TOL.

3http://snap.stanford.edu/data/
4http://konect.uni-koblenz.de/
5http://law.di.unimi.it
6http://networkrepository.com/

694

TABLE VI: The Comparison with Competitor Methods

Index Time (sec) Index Size (MB) Query Time (sec)

Name BFLC BFLD TOL DRLb DRLMb BFLC BFLD TOL DRLb DRLMb BFLC BFLD TOL DRLb DRLMb

WEBW 1.51 59.21 61.84 9.08 7.31 85.35 85.35 432.06 432.06 432.06 8.58E-07 5.39E-05 2.09E-07 2.09E-07 2.09E-07
DBPE 2.10 110.17 2.21 0.92 0.64 154.07 154.07 63.91 63.91 63.91 2.25E-07 4.63E-05 1.51E-07 1.51E-07 1.51E-07
CITE 3.39 195.62 4.95 2.34 1.42 299.40 299.40 138.80 138.80 138.80 1.24E-07 4.52E-05 1.78E-07 1.78E-07 1.78E-07
CITP 5.10 138.30 125.21 13.36 11.17 172.80 172.80 622.04 622.04 622.04 5.68E-07 5.07E-05 3.12E-07 3.12E-07 3.12E-07
TW 3.74 469.34 7.27 1.13 1.40 829.52 829.52 271.60 271.60 271.60 1.95E-07 6.72E-05 1.84E-07 1.84E-07 1.84E-07
GO 3.56 365.38 7.40 1.76 2.03 318.97 318.97 274.43 274.43 274.43 1.11E-07 4.41E-05 2.02E-07 2.02E-07 2.02E-07
SINA 41.35 2,822.48 − 136.32 − 2,685.05 2,685.05 − 13,691.20 − 2.82E-06 8.64E-05 − 6.76E-07 −
LINK 16.29 213.43 55.16 15.64 9.38 622.24 622.24 239.76 239.76 239.76 2.29E-07 7.31E-05 1.35E-07 1.35E-07 1.35E-07
WEBB − 1,181.08 − 103.98 − − 5,408.12 − 2,578.85 − − 2.37E-04 − 1.84E-07 −
GRPH 46.30 6.36 76.31 24.00 16.44 780.20 780.20 325.01 325.01 325.01 9.61E-08 7.03E-05 8.71E-08 8.71E-08 8.71E-08
TWIT 57.44 304.55 134.87 62.82 35.79 1,906.69 1,906.69 766.17 766.17 766.17 1.55E-07 1.43E-04 1.06E-07 1.06E-07 1.06E-07
HOST − 1,655.19 − 66.87 − − 2,626.83 − 926.77 − − 5.30E-04 − 2.26E-07 −
GSH − 512.04 − 77.93 − − 3,143.01 − 1,266.78 − − 2.85E-04 − 1.37E-07 −
SK − 219.47 − 82.85 − − 2,317.94 − 975.83 − − 1.80E-04 − 1.01E-07 −
TWIM − 359.05 − 68.36 − − 2,406.91 − 958.17 − − 2.60E-04 − 2.76E-07 −
FRIE − 688.47 − 112.77 − − 3,128.79 − 1,240.01 − − 3.58E-04 − 4.38E-07 −
UK − 296.52 − 217.94 − − 3,558.70 − 1,567.59 − − 2.25E-04 − 2.81E-07 −
WEBS − 747.92 − 188.58 − − 4,847.56 − 2,063.97 − − 4.81E-04 − 4.15E-07 −

On index size. For DRLb, we aggregate the index distributed on

different computation nodes on one node. Hence, our algorithms

have the same index size as TOL. The index size of DRLb
(and TOL) on all graphs is very small. For example, the largest

graph WEBS has an index size of 2.06 GB. This indicates that

although distributed graphs may be large, the generated index

can be accommodated on an ordinary machine to support in-

memory queries. So, it is feasible to create the index of TOL
for a distributed graph because the index size is not so large.

On query time. DRLb creates the same index as TOL, so the

query time is the same for TOL and DRLb. The query time of

DRLb (and TOL) on all graphs is less than one microsecond. This

result reinforces our research motivation that efficient reachability

queries on a distributed graph can be supported by proposing new

labeling methods to obtain the same index as TOL.

Exp 2: Comparison with BFL. We compare our best method

DRLb with BFL, which is an index-assisted method [9]. BFL
uses DFS to create the index and may also use the online

search (e.g. DFS) at query time. We use the code provided

in [9] to implement the centralized BFL algorithm, which is

denoted as BFLC, where all parameters are set by default. Also,

we implemented a distributed version of DFS (which is a core

operation of BFL) to obtain the distributed BFL algorithm, which

is denoted as BFLD. BFLC runs on one computation node, while

BFLD runs on 32 nodes. We compare DRLb, BFLC, and BFLD

and record the results in Table VI.

On index time. (1) First, we compare DRLb with the centralized

algorithm BFLC. On medium-sized graphs, the index time of

BFLC is normally better than that of DRLb. But the index time of

DRLb is comparable to that of BFLC: the index time of DRLb is

within seven times that of BFLC. Moreover, DRLb can handle

large-scale graphs for which BFLC cannot create indexes. (2)

Then, we compare DRLb with the distributed algorithm BFLD.

BFLD can process large-scale graphs by partitioning them to

different computation nodes. But because BFLD requires the

distributed DFS to create indexes, its index time is very high:

BFLD runs on average 52.54 times slower than DRLb.

On index size. Since the index sizes of BFLC and BFLD are the

same on all graphs, we only compare the index sizes of BFLD and

DRLb. It can be seen that the index size of BFLD is small on all

graphs (no larger than 6 GB), and the index of BFLD is smaller

than that of DRLb on WEBW, CITP, and SINA. However, the

index size of DRLb is smaller than that of BFLD on the other

graphs: the index size of DRLb is on average 2.38 times smaller

than that of BFLD on these graphs.

On query time. (1) We first compare the query time of BFLC and

DRLb. Both BFLC and DRLb can answer queries in microseconds,

but the performance of DRLb is better than BFLC: on average,

the query time of DRLb is 1.8 times faster than that of BFLC on

graphs that BFLC can process. (2) Then we compare the query

time of BFLD and DRLb. Because BFLD cannot avoid traversing

the distributed graph to answer queries, the performance of BFLD

can be very bad: the query time of BFLD is on average 867.6 times

longer than that of DRLb.

Overall, BFL performs well only when index creation can

be done on a single node (see performance of BFLC); when

dealing with large graphs, BFL has high index time and query

time due to the high cost of distributed DFS and graph search

(see performance of BFLD). This clarifies why we parallelize the

index-only method TOL instead of BFL. Note that the graphs

we use are not converted to be acyclic because of the high

cost of performing such conversions in a distributed environment

using DFS. This partly explains why there are some minor

inconsistencies between our conclusions and [9].

Exp 3: Comparison with Multi-core Version. Our algorithm

DRLb (see Algorithm 4) achieves parallelism among multiple

computation nodes in a distributed environment. Besides, we

can also achieve parallelism among multiple threads (instead of

multiple nodes), resulting in a multi-core version of DRLb, which

is denoted as DRLMb . For a fair comparison, we test DRLMb in a

machine configured similarly to the single computation node used

by DRLb, and this machine contains 32 cores and has a memory

size of 32 GB. OpenMP [38] is used to implement DRLMb . Since

DRLb and DRLMb have the same index size and query time, we

compare only the index time between them. We record the results

in Table VI and have the following findings.

On medium-sized graphs. Because DRLMb can use shared memory

for data exchange [39], it avoids the communication cost of DRLb.

This leads to a better index time for DRLMb than for DRLb in

most cases: DRLMb is 1.34 times faster than DRLb on graphs

where DRLMb can create indexes. However, this speedup is limited.

One possible reason is that the communication cost of DRLb
is relatively small compared to the computation cost (see the

communication time and the computation time of DRLb in Exp

695

Computation Communication

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

DRL- DRL DRLb

Time Consumption (sec)

(a) WEBW

 0

 0.5

 1

 1.5

 2

 2.5

DRL- DRL DRLb

Time Consumption (sec)

(b) DBPE (DRL− Fails)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

DRL- DRL DRLb

Time Consumption (sec)

(c) CITE (DRL− Fails)

 0

 100

 200

 300

 400

 500

 600

DRL- DRL DRLb

Time Consumption (sec)

(d) CITP

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

DRL- DRL DRLb

Time Consumption (sec)

(e) TW (DRL− Fails)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

DRL- DRL DRLb

Time Consumption (sec)

(f) GO
Fig. 5: The Comparison of Communication and Computation Time

4 for details), leading to a less prominent advantage of shared

memory.

On large-scale graphs. Since DRLMb is a centralized algorithm,

the usability of DRLMb is limited by memory and therefore cannot

build indexes for massive graphs. For example, DRLMb ran out of

memory when building the index for WEBS. On the other hand,

DRLb can allocate graphs to multiple computation nodes and thus

is more suitable for large graph processing.

C. Comparison Between Proposed Algorithms

Exp 4: Communication and Computation Time. We compare

our proposed labeling algorithms, DRL−, DRL, and DRLb. We

divide the index time of the proposed algorithms into computation

time and communication time. If an algorithm is unable to finish

labeling within the cut-off time, we do not report its time and

mark the failure at the title of that graph. Due to space constraints,

we present in Fig. 5 the results on the first 6 graphs (WEBW,

DBPE, CITE, CITP, TW, and GO) with the following findings.

Comparison of DRL− and DRL. Compared to DRL−, DRL uses

the inverted list to implement the refinement phase. We find that

DRL can index on DBPE, CITE and TW, while DRL− cannot. In

addition, on the other three graphs, DRL has an average of 88.2
times shorter index time than DRL−, thanks to the new refinement

technique used by DRL.

Comparison of DRL and DRLb. DRLb uses batch labeling to

further optimize DRL. We find that DRLb has an average of 3.5
times shorter index time over DRL. Moreover, DRLb reduces the

computation time while substantially reducing the communication

cost of DRL, which validates the effectiveness of the optimization

strategy used by DRLb.

Exp 5: Effect of Node Number. We used 32 computation nodes

by default. To test the impact of the number of computation nodes

on the proposed algorithms, we varied the number of nodes from

1, 2, 4, 8, 16 to 32 and recorded the corresponding index time.

We define the speedup as the ratio of the index time on one node

to the index time on x nodes, i.e., speedup = the index time on 1 node
the index time on x node

.

If an algorithm fails to finish labeling within the cut-off time on

1 node, we do not report its speedup ratio and mark the failure

DRL- DRL DRLb

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1 2 4 8 16 32

Speedup

(a) WEBW (DRL− Fails)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1 2 4 8 16 32

Speedup

(b) DBPE (DRL− Fails)

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16 32

Speedup

(c) CITE (DRL− Fails)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1 2 4 8 16 32

Speedup

(d) CITP (DRL− Fails)

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8 16 32

Speedup

(e) TW (DRL− Fails)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1 2 4 8 16 32

Speedup

(f) GO
Fig. 6: The Effect of # of Nodes on the Index Time

at the title of that graph. We show the speedup ratios on the first

six graphs in Fig. 6 with the following findings.

DRLb has a satisfying speedup ratio. The maximum speedup ra-

tio for DRLb with 32 nodes is 17.93 (on CITP) compared to

using a single node. Moreover, the speedup ratio of DRLb shows

an increasing trend as the number of nodes increases.

The speedup of DRL− and DRL has limitations. Although the

maximum speedup ratio of DRL− is 12.54 (on GO), DRL−

cannot finish labeling on other five graphs using a single node

within the cut-off time. On the other hand, although the maximum

speedup ratio of DRL is 18.69 (on WEBW), on TW, the ratio

of DRL is only 2.86 while that of DRLb is 17.2, which shows

that introducing the batch labeling optimization maintains a better

speedup ratio.

DRL- DRL DRLb

10-1

100

101

102

103

104

20% 40% 60% 80% 100%

Time Consumption (sec)

(a) WEBW

10-2
10-1
100
101
102
103
104
105
INF

20% 40% 60% 80% 100%

Time Consumption (sec)

(b) DBPE

10-2
10-1
100
101
102
103
104
105
INF

20% 40% 60% 80% 100%

Time Consumption (sec)

(c) CITE

10-1

100

101

102

103

20% 40% 60% 80% 100%

Time Consumption (sec)

(d) CITP

10-1

100

101

102

103
INF

20% 40% 60% 80% 100%

Time Consumption (sec)

(e) TW

10-1

100

101

102

20% 40% 60% 80% 100%

Time Consumption (sec)

(f) GO
Fig. 7: The Test of the Scalability on the Index Time

Exp 6: Test of Scalability. In testing the scalability of the

proposed algorithms, we divide the edges of the graph into

five disjoint groups, each group consisting of 1
5 edges of the

696

 0
 2
 4
 6
 8

 10
 12
 14

1 2 4 8 16 32 64 128

Time Consumption (sec)

(a) WEBW

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

Time Consumption (sec)

(b) DBPE

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

Time Consumption (sec)

(c) CITE

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32 64 128

Time Consumption (sec)

(d) CITP

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

Time Consumption (sec)

(e) TW

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

Time Consumption (sec)

(f) GO
Fig. 8: The Effect of Initial Batch Size b on the Index Time

original graph. We generate five test graphs, where the i-th test

graph contains edges in the first i groups. The experiments are

conducted on five test graphs for each dataset. Since the index

size and query time are the same for all algorithms, we omit the

discussion of them and only provide the effect on the index time

in Fig. 7. We have the following finding.

The proposed algorithms exhibit good scalability. The index

time of all algorithms improves as the graph size becomes larger.

However, the increase of all methods is smooth. For example, the

index time of DRLb for the test graph with 100% edges is 4.8
times longer than that of the test graph with 20% edges on TW.

This indicates the good scalability of the proposed algorithms.

D. Effect of Parameters on Index Time

In Exp-4, we verified that using the batch labeling optimization

(forming DRLb) can speed up the index time of DRL. For DRLb,

two parameters need to be set to generate the batch sequence:

the initial batch size b and the incremental factor k. We set both

parameters to 2 by default, but we need to further test the effect of

these two parameters on the index performance (time) of DRLb.

Exp 7: Effect of Initial Batch Size b. We first analyze the effect

of b. We vary the value of b from 1, 2, 4, 8, 16, 32, 64, to 128.

We record the index time of DRLb for different values of b and

present the results of DRLb on the first 6 graphs in Fig 8. We

have the following findings.

b has little effect on the index time. As the value of b varies, the

difference between the maximum index time and the minimum

index time on all used graphs is no more than 1.5 times. This

indicates that DRLb is not sensitive to the parameter b.

The default value of 2 is a good choice. On some graphs (e.g.,

WEBW and DBPE), setting b to 2 leads to a local minimum

index time. This explains why 2 is used as the default value.

Exp 8: Effect of Factor k. We analyze the effect of another

parameter k on the index time. We vary the value of k from 1,

1.5, 2, 2.5, 3, 3.5, to 4. We report the index time of DRLb for

different k in Fig. 9 and obtain the following findings.

When k is not 1. When k is taken other than 1, the index time

does not vary much: the difference between the maximum and

100

101

102

103

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(a) WEBW

10-1

100

101

102

103

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(b) DBPE

100

101

102

103

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(c) CITE

101

102

103

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(d) CITP

100

101

102

103

104

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(e) TW

100

101

102

103

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(f) GO
Fig. 9: The Effect of Factor k on the Index Time

minimum index time on all graphs does not exceed 1.4. Also, on

some graphs (e.g., DBPE and CITE), the index time reaches a

local minimum when k is 2, so 2 is used as the default value.
When k is 1. The index time becomes very slow when k is taken

as 1: the index time is up to 812 times slower when k is 1 than

when k is taken as other. This further explains why k needs to

be set to 2 as the default value.

VII. CONCLUSIONS

We develop novel labeling methods to produce the same

indexes as TOL on distributed graphs. To overcome the limitation

that TOL cannot be executed in parallel, we resort to finding

the backward label set of each vertex. We propose to use a

filtering-and-refinement framework to find backward label sets.

Using this framework, we design new labeling algorithms and

further improve the efficiency by batch labeling optimization.

Experimental results show that our algorithms can efficiently

handle distributed graphs. The follow-up work is to maintain

the indexes on distributed dynamic graphs. Another important

research direction is to further explore the features of distributed

and multi-core systems to accelerate the construction of indexes.

APPENDIX

Proof of Lemma 1. We verify only the case vi ∈ Lin(w).

• ⇐: If Liout(vi) ∩ Liin(w) = ∅, then there is no vertex u with

ord(u) > ord(vi) such that vi → u → w. Then, vi is the

highest-order vertex on all paths from vi to w. By Theorem 1,

vi ∈ Lin(w).
• ⇒: If vi ∈ Lin(w) but Liout(vi) ∩ Liin(w) = S �= ∅, we choose

s ∈ S whose order is the highest in S. s �= vi since vi �∈
Liin(vi) by definition. Moreover, the fact that s ∈ S yields vi →
s → u and ord(s) > ord(vi). By Theorem 1, vi �∈ Lin(w),
contradiction.

ACKNOWLEDGMENT

Lu Qin is supported by ARC FT200100787 and DP210101347.

Ying Zhang is supported by ARC FT170100128 and ARC

DP210101393. Xuemin Lin is supported by ARC DP180103096

and ARC DP170101628.

697

REFERENCES

[1] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, “The ubiquity
of large graphs and surprising challenges of graph processing: extended
survey,” The VLDB Journal, vol. 29, no. 2, pp. 595–618, 2020.

[2] J. X. Yu and J. Cheng, “Graph reachability queries: A survey,” in Managing
and Mining Graph Data. Springer, 2010, pp. 181–215.

[3] R. Jin and G. Wang, “Simple, fast, and scalable reachability oracle,”
Proceedings of the VLDB Endowment, vol. 6, no. 14, pp. 1978–1989, 2013.

[4] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing breadth-
first search,” in SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE, 2012,
pp. 1–10.

[5] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal
on computing, vol. 1, no. 2, pp. 146–160, 1972.

[6] R. Jin, N. Ruan, S. Dey, and J. Y. Xu, “Scarab: scaling reachability
computation on large graphs,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. ACM, 2012, pp. 169–
180.

[7] H. Yildirim, V. Chaoji, and M. J. Zaki, “Grail: Scalable reachability index
for large graphs,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
276–284, 2010.

[8] H. Wei, J. X. Yu, C. Lu, and R. Jin, “Reachability querying: An independent
permutation labeling approach,” Proceedings of the VLDB Endowment,
vol. 7, no. 12, pp. 1191–1202, 2014.

[9] J. Su, Q. Zhu, H. Wei, and J. X. Yu, “Reachability querying: Can it be even
faster?” IEEE Transactions on Knowledge and Data Engineering, vol. 29,
no. 3, pp. 683–697, 2016.

[10] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and distance
queries via 2-hop labels,” SIAM Journal on Computing, vol. 32, no. 5, pp.
1338–1355, 2003.

[11] R. Schenkel, A. Theobald, and G. Weikum, “Hopi: An efficient connection
index for complex xml document collections,” in International Conference
on Extending Database Technology. Springer, 2004, pp. 237–255.

[12] J. Cheng, J. X. Yu, X. Lin, H. Wang, and S. Y. Philip, “Fast computation
of reachability labeling for large graphs,” in International Conference on
Extending Database Technology. Springer, 2006, pp. 961–979.

[13] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu, “Fast computing
reachability labelings for large graphs with high compression rate,” in
Proceedings of the 11th international conference on Extending database
technology: Advances in database technology. ACM, 2008, pp. 193–204.

[14] A. D. Zhu, W. Lin, S. Wang, and X. Xiao, “Reachability queries on large
dynamic graphs: a total order approach,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM, 2014,
pp. 1323–1334.

[15] T. Zhang, Y. Gao, C. Li, C. Ge, W. Guo, and Q. Zhou, “Distributed
reachability queries on massive graphs,” in International Conference on
Database Systems for Advanced Applications. Springer, 2019, pp. 406–
410.

[16] W. Fan, X. Wang, and Y. Wu, “Performance guarantees for distributed
reachability queries,” Proceedings of the VLDB Endowment, vol. 5, no. 11,
pp. 1304–1316, 2012.

[17] Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida, “Fast and scalable reachability
queries on graphs by pruned labeling with landmarks and paths,” in
Proceedings of the 22nd ACM international conference on Information &
Knowledge Management. ACM, 2013, pp. 1601–1606.

[18] L. G. Valiant, “A bridging model for parallel computation,” Communications
of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[19] X. Feng, L. Chang, X. Lin, L. Qin, and W. Zhang, “Computing connected
components with linear communication cost in pregel-like systems,” in 2016
IEEE 32nd International Conference on Data Engineering (ICDE). IEEE,
2016, pp. 85–96.

[20] T. Zhang, Y. Gao, L. Chen, W. Guo, S. Pu, B. Zheng, and C. S. Jensen,
“Efficient distributed reachability querying of massive temporal graphs,” The
VLDB Journal, vol. 28, no. 6, pp. 871–896, 2019.

[21] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[22] B. Awerbuch, “A new distributed depth-first-search algorithm,” Information
Processing Letters, vol. 20, no. 3, pp. 147–150, 1985.

[23] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[24] E. Nuutila, “Efficient transitive closure computation in large digraphs.” 1998.
[25] S. J. van Schaik and O. de Moor, “A memory efficient reachability data

structure through bit vector compression,” in Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data. ACM, 2011,
pp. 913–924.

[26] R. Agrawal, A. Borgida, and H. V. Jagadish, “Efficient management of
transitive relationships in large data and knowledge bases,” in ACM SIGMOD
Record, vol. 18, no. 2. ACM, 1989, pp. 253–262.

[27] Y. Chen and Y. Chen, “An efficient algorithm for answering graph reach-
ability queries,” in 2008 IEEE 24th International Conference on Data
Engineering. IEEE, 2008, pp. 893–902.

[28] R. Jin, Y. Xiang, N. Ruan, and H. Wang, “Efficiently answering reachability
queries on very large directed graphs,” in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM, 2008,
pp. 595–608.

[29] W. Li, M. Qiao, L. Qin, Y. Zhang, L. Chang, and X. Lin, “Scaling distance
labeling on small-world networks,” in Proceedings of the 2019 International
Conference on Management of Data, 2019, pp. 1060–1077.

[30] K. Lakhotia, R. Kannan, Q. Dong, and V. Prasanna, “Planting trees for
scalable and efficient canonical hub labeling,” Proceedings of the VLDB
Endowment, vol. 13, no. 4.

[31] J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu, “Tf-label: a topological-folding
labeling scheme for reachability querying in a large graph,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management of
Data. ACM, 2013, pp. 193–204.

[32] J. Leskovec and A. Krevl, “Snap datasets: Stanford large network dataset
collection,” 2014.

[33] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of
the 22nd International Conference on World Wide Web. ACM, 2013, pp.
1343–1350.

[34] P. Boldi and S. Vigna, “The WebGraph framework I: Compression tech-
niques,” in Proc. of the Thirteenth International World Wide Web Conference
(WWW 2004). Manhattan, USA: ACM Press, 2004, pp. 595–601.

[35] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: A
multiresolution coordinate-free ordering for compressing social networks,”
in Proceedings of the 20th international conference on World Wide Web,
S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra, E. Bertino, and
R. Kumar, Eds. ACM Press, 2011, pp. 587–596.

[36] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com

[37] J. Zhou, S. Zhou, J. X. Yu, H. Wei, Z. Chen, and X. Tang, “Dag reduction:
Fast answering reachability queries,” in Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, 2017, pp. 375–
390.

[38] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[39] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald,
Parallel programming in OpenMP. Morgan kaufmann, 2001.

698

