
Exacting Eccentricity for Small-World Networks
Wentao Li�, Miao Qiao#, Lu Qin�, Ying Zhang�, Lijun Chang§, and Xuemin Lin‡

�CAI, FEIT, University of Technology Sydney, Australia #Massey University, New Zealand
‡The University of New South Wales, Australia §The University of Sydney, Australia

�wentao.li@student.uts.edu.au; {lu.qin, ying.zhang}@uts.edu.au;
#m.qiao@massey.ac.nz; §lijun.chang@sydney.edu.au; ‡lxue@cse.unsw.edu.au;

Abstract—This paper studies the efficiency issue on
computing the exact eccentricity-distribution of a small-
world network. Eccentricity-distribution reflects the im-
portance of each node in a graph, which is beneficial
for graph analysis. Moreover, it is key to computing two
fundamental graph characters, diameter and radius. Ex-
isting eccentricity computation algorithms, however, are
either inefficient in handling large-scale networks emerg-
ing nowadays in practice or approximate algorithms that
are inappropriate to small-world networks. We propose
an efficient approach for exact eccentricity computation.
Our approach is based on a plethora of insights on the
bottleneck of the existing algorithms — one-node eccen-
tricity computation and the upper/lower bounds update.
Extensive experiments demonstrate that our approach
outperforms the state-of-the-art up to three orders of
magnitude on real large small-world networks.

I. Introduction

Shortest distances characterize the pair-wise relationships
among nodes in a graph. Given a graph with a vertex/node
set and an edge set, the shortest distance dist(u, v) between
two nodes u, v is defined as the least length of a path from u to
v. Similarly, the longest shortest distance from one node u to
all the other nodes of the graph, defined as the eccentricity
of u, constitutes two fundamental [1] characters of the entire
graph — diameter and radius. Diameter is the maximum
eccentricity while radius is the minimum eccentricity, over all
the nodes in a graph. For big-graph analysis nowadays, the
computation of a graph’s diameter and radius is inevitable.
The eccentricity, apart from its usage in computing the

diameter and radius, measures the centrality of a node in the
graph. The eccentricity-distribution, namely, the eccentric-
ities of all the nodes in a graph, thus helps in identifying
important vertices in a graph, which could be influential
people in a social network, critical nodes in an epidemic
contact network, or important sites in a web graph. With
all the applications listed above, an efficient approach for
computing the eccentricity-distribution of a graph is highly
demanded.
Unfortunately, the computation of the eccentricities is

ultra-expensive, especially in this big data era. Currently, all
algorithms for computing even the diameter require Ω(n2

log n)
time (see [2], [3] and the reference therein). Here n denotes the
total number of nodes in the graph, which is 1.32 billion on
Facebook1. The size of n causes an efficiency issue; to resolve
which, a natural solution is to introduce approximation.
Indeed, algorithms like [4], [5] have been proposed to

compute an estimated eccentricity ẽcc(v) instead of the exact
eccentricity ecc(v) to gain the computation efficiency. For

1https://newsroom.fb.com/company-info/

example, on an undirected and unweighted graph, Chechik
et al. [5] computes ẽcc(v) in O((m logm) 3

2) time, where m
denotes the total number of edges in the graph. More efficient
approximate algorithms are still expected; however, even if a
linear-timed approximate algorithm has been found, it may
not be suitable to certain unweighted graphs — small-world
networks, as long as an error is allowed in computing ecc(v).
Small-world networks, a term first proposed by Watts and

Strogatz [6], describes a group of graphs that feature a highly
clustered topology and short path-length. The phenomena of
short path-length has been observed much earlier in the book
of “Six Degrees of Separation” [7], and has been confirmed
later on recent data of biological networks, neural networks,
collaboration networks, communication networks, and social
networks. For example2, Slashdot, a social network, has a
diameter of 11 while wiki-talk, a communication network,
has a diameter of 9. On unweighted networks, any additive
positive error δ = ẽcc(·) − ecc(·) will have δ ≥ 1. Note that
δ = 1 is already significant to the short radius/diameter of a
small-world network: if the radius r = 5, then 1

r = 20%, let
alone the fact that δ can hardly be bounded by 1.
For small-world networks, the state-of-the-art exact eccen-

tricity computation (see [8] and the reference therein) follows
the same paradigm, which i) associates each node with an
upper and a lower bound on its eccentricity; ii) for each node
v, if the upper and lower bounds of v does not meet, compute
the eccentricity ecc(v) using a Breadth-First-Search (BFS)
and then update the bounds globally for all other nodes.
The performance is, therefore, largely dependent on the node-
order of v traversed in Step ii).
Our approach revises the paradigm and demonstrates a

superior efficiency. Specifically, we provide a spectrum of
insights to avoid the exhaustive BFS and global update —
the bottleneck of the existing approaches. Instead, we make
the most out of each computation by leveraging a myriad of
techniques in lowering the gap between the upper and lower
bounds. Our contributions are summarized as below.

• In the eccentricity computation of a node v, our algo-
rithm determines ecc(v) at an early-stage by visiting
first from nodes that are distant to v. Furthermore, our
algorithm inherits the global bounds on the eccentricity
distribution which can terminate the search even earlier.
In contrast, BFS uses Ω(n) time to compute ecc(v)
regardless how close the upper and lower bounds are.

• In updating the eccentricity bounds, we show that it
suffices for our algorithm to update only a connected area
of, in expectation, O(d) nodes while achieving the same

2https://snap.stanford.edu/data/index.html.

785

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00076

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

effect as performing a global update. Here d is the graph
diameter — a small integer for a small-world network.

• Empirical studies show that our approach outperforms
the state-of-the-art by up to three orders of magnitude.
In particular, our approach is the only one that com-
pleted the computation within 24 hours on all graphs.

The paper is organized as follows. Section II formally
introduces the problem definition and the state-of-the-art
approach. Section III describes our algorithm in computing
the eccentricity of one node. Section IV depicts an efficient
update algorithm. Section V summarizes the related work.
Section VI demonstrates the experimental results while Sec-
tion VII concludes the paper.

II. Preliminary

This paper focuses on the eccentricity on an unweighted
and undirected graph. Let G(V, E) be a graph with a set
V of nodes and a set E of edges. Each edge e(u, v) in E
connects two nodes u, v in V . Denote |V | as n, |E| as m.
Given two nodes s and t in V , a path p(s, t) from s to t
is a sequence of distinct nodes 〈u0, u1, · · · , uk〉 starts from
u0 = s and ends at uk = t with neighboring nodes connected
by edges, that is, (ui−1, ui) ∈ E, for ∀i ∈ [1, k]. The length
|p(s, t)| of a path is the total number of edges on the path.
The shortest distance dist(s, t) between s and t is the length
of the shortest path from s to t. The shortest distances on V
hold the triangle inequality, that is, for three nodes s, u, t ∈ V ,
dist(s, t) ≤ dist(s, u) + dist(u, t).

v1

v4

v3

v5

v2

v6

v7 v9

v11 v10

v8

Fig. 1. An Example Graph G

v1

v4

v3

v5

v2

v6

v7 v9

v11 v10

v8

3

3 4

4

3
2

3
3

3
3

4

Fig. 2. Eccentricity of Nodes in G

Example 1. Fig. 1 shows a running example of graph G
with 11 nodes and 17 edges. The shortest path from v7 to v8
is 〈v7, v1, v9, v8〉 with dist(v7, v8) = 3. For nodes v7, v8, v3,
the triangle inequality dist(v7, v8) ≤ dist(v3, v7)+ dist(v7, v8)
holds since dist(v7, v3) = 2 and dist(v3, v8) = 2.

Definition 1 (Eccentricity). Given a node u of a graph
G(V, E), the eccentricity of u is defined as

ecc(u) = max
v∈V

dist(u, v).

Example 2. Fig. 2 labels, on the graph G of the run-
ning example, the eccentricity of each node. The color gray
scale indicates, for each node, the eccentricity value: a node
with a darker color means that it has a smaller eccentric-
ity. For example, the eccentricity of node v1 is calculated
as ecc(v1) = maxv∈V dist(v1, v) = 2, and ecc(v11) =
maxv∈V dist(v11, v) = 4. Intuitively, a node at the center has
a smaller eccentricity than the node at the border.

Trivially, if a graph is disconnected, that is, there exist two
nodes u, v such that there is no path from u to v, then the
eccentricities of all the nodes in V become +∞. We, therefore,
assume that G(V, E) is connected.

Problem 1 (Eccentricity Computation). Given a connected
graph G(V, E), compute the eccentricity-distribution, namely,
the eccentricity ecc(u) for all the nodes u ∈ V .
A. Pair-Wise Shortest Distance
The building block for the eccentricity computation is

shortest distance computation. On unweighted graphs, the
pair-wise shortest-distance problem (PWSD), that is, the
computation of the distance between two given nodes u and v,
can be resolved by performing a Breadth-First-Search (BFS)
from node u. However, a BFS takes O(m) time which can be
more than 1 second for large real graphs.
2-hop labeling methods are proposed to efficiently answer

PWSD queries. 2-hop labeling methods label each node w in
V with the distances from w to every node in a set S(w) ⊆ V .
The set S(·) is selected for each node such that for any two
nodes u, v in V , S(u) ∩ S(v) contains at least one node on a
shortest path from u to v. In such a way, the shortest distance
can be computed with triangle inequalities:

dist(u, v) = min
x∈S(u)∩S(v)

dist(u, x) + dist(x, v).

Pruned landmark labeling. General 2-hop labeling methods
suffer from a large label set. A 2-hop labeling method called
Pruned Landmark Labeling (PLL) approach [9] has been pro-
posed specifically for the PWSD problem on social networks.
Specifically, it provides a label pruning technique that is
especially effective on social networks: a PWSD query can be
answered in 1 microsecond even for a large social network.

v1

0

v1

1

v2

0

v1

1

v3

0

v1

1

v2

1

v3

1

v4

0

v1

1

v2

1

v3

1

v5

0

v1

1

v2

1

v6

0

v1

1

v2

1

v7

0

v1

2

v3

2

v8

0

v1

1

v8

1

v9

0

v1

2

v3

1

v8

1

v10

0

v1

2

v2

1

v11

0

v1 v2 v3 v4

v5 v6

v7 v8 v9

v10 v11

Fig. 3. Pruned Landmark Labeling for All Nodes in G

Example 3. Fig. 3 shows the pruned landmark labeling for all
nodes in graph G Fig. 1 of the running example. For example,
the label of v5 is S(v5) = {v1 : 1, v2 : 1, v3 : 1, v5 : 0}
and the label of v8 is S(v8) = {v1 : 1, v3 : 1, v8 : 0}. We
have S(v5) ∩ S(v8) = {v1, v3}. Therefore, we can calculate
dist(v5, v8) = min{dist(v5, v1) + dist(v1, v8), dist(v5, v3) +
dist(v3, v8)} = min{1 + 2, 1 + 2} = 3.
Average label length. The technique of PLL can be used as a
black box with a parameter b of graph G defined as below.

Definition 2 (Average Label Length). Given a graph G, de-
note by S(u) the set of nodes selected by the pruned landmark
labeling (PLL) approach for a node u in G. Define the Average
Label Length as b = averageu∈V |S(u)| = Σu∈V

|S(u)|
n .

The parameter of average label length is introduced to
quantify the query time of PLL. Fig. 1 and Fig. 3 show that
the label length of a node is not proportional to its degree.

Lemma 1. Expectedly, the shortest distance between two
nodes can be computed in O(b) time by leveraging PLL.

786

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: BoundEcc
Input: Graph G(V, E)
Output: ecc(u) for each u ∈ V

1 W ← a priority queue of V ;
2 Initialize: ecc(u)← +∞, ecc(u)← 0, for ∀u ∈ V ;
3 while W is not empty do
4 u ← W.pop();
5 Compute dist(u, v), for ∀v ∈ V , by calling a BFS;
6 ecc(u)← maxv∈V dist(u, v);
7 for each node w ∈ W do
8 ecc(w)← min{ecc(w), ecc(u) + d(u, w)};
9 ecc(w)← max{ecc(w), d(u, w), ecc(u)−d(u, w)};

10 if ecc(w) = ecc(w) then remove w from W ;

11 return ecc(u), ∀u ∈ V

Proof: For two nodes u, v ∈ V , it costs O(|S(u)| + |S(v)|)
to compute minw∈S(u)∩S(v) dist(u, w) + dist(w, v).

Expu,v∈V (|S(u)|+ |S(v)|) = 2Expu∈V |S(u)| = 2b. �
As we shall see in our experiment (Table II), the average

label lengths of most social networks are less than 102.

B. Eccentricity Computation: The State-Of-The-Art
The method BoundEcc [8] for computing the eccentricity

of each node in V is shown in Algorithm 1. It follows the
general framework of many eccentricity, radius, diameter
computation methods. It associates each node u ∈ V with
an upper bound ecc(u) of the eccentricity ecc(u) and a lower
bound ecc(u) (Line 2), update them (Line 7-9) until either the
bounds meet (Line 11) or a BFS is performed to determine
the exact ecc(u) (Line 5-6). The upper and lower bounds
are generally updated with triangle inequalities (Line 8-9).
Specifically, Lemma 2 shows how the bounds are derived.

Lemma 2 (Update Bounds [8]). Let u be a node of graph
G(V, E) with eccentricity ecc(u). Given a node v and its
distance dist(v, u) to u,

ecc(v) ≤ ecc(u) + dist(u, v) (1)
ecc(v) ≥ ecc(u)− dist(u, v) (2)
ecc(v) ≥ dist(u, v) (3)

Theoretically, as long as one adopts this framework, the
complexity in the worst-case will be at least quadratic to
n. BoundEcc allows one to adopt different heuristics on the
setting of the priorities in W (Line 2). However, the invariant
action of BFS taken for computing ecc(u) (Line 5-6) has two
prominent drawbacks:

• As long as ecc(u) < ecc(u), even when they differ by only
1, ecc(u) will be computed from scratch. This essentially
wastes the previous efforts in narrowing the gap between
ecc(u) and ecc(u) entirely.

• Since ecc(u) is the distance from u to the “farthest” node,
BFS has to traverse all the nodes in V which leaves no
chance for an early-stop.

Besides, BoundEcc updates the eccentricity bounds of every
node in W (Line 7), which, together with the BFS (Line 5),
renders a heavy burden to the performance of the eccentricity
computation on real-graphs in practice.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
1 2 1, 3 1, 3 1, 3 1, 3 1, 3 1, 3 2, 4 1, 3 2, 4 2, 4
2 - 3 2, 3 2, 3 2, 3 2, 3 2, 3 3, 4 2, 3 3, 4 2, 4
3 - - 3 2, 3 2, 3 2, 3 2, 3 3, 4 2, 3 3, 4 3, 4
4 - - - 3 2, 3 2, 3 2, 3 3, 4 3, 3 3, 4 3, 4
5 - - - - 3 2, 3 2, 3 3, 4 - 3, 4 3, 4
6 - - - - - 3 2, 3 3, 4 - 3, 4 3, 4
7 - - - - - - 3 3, 4 - 3, 4 3, 4
8 - - - - - - - 4 - 3, 4 4, 4
9 - - - - - - - - - 4 -

TABLE I
The Execution of BoundEcc

Example 4. The execution process of BoundEcc is shown
in Table I. The two numbers in each cell are the upper
and lower bounds of eccentricity for the corresponding node.
Using BoundEcc, we need to recalculate the eccentricity for
9 nodes. The dark gray color indicates a recalculation while
the light gray color means an update of lower/upper bound
after computing the exact eccentricity for a certain node. For
example, after computing ecc(v2) = 3, we can update the
lower/upper bounds of v3 from 1, 3 to 2, 3. Obviously, the
BoundEcc algorithm involves a large number of exact shortest
path calculations.

C. Problem Definition
We study the eccentricity computation by focusing on two

specific problems, as shall be defined below.

Problem 2 (Exacting Eccentricity for a Node). Given a
node x in graph G(V, E), associated with ecc(x) and ecc(x),
determine the eccentricity ecc(x) of x in a way that is faster
than BFS in practice.

Let each node u ∈ V in G(V, E) bear an upper bound
ecc(u) and a lower bound ecc(u) on the eccentricity ecc(u)
of u. The bounds {ecc(u), ecc(u)}, ∀u ∈ V, are called the
eccentricity-bounds.
Problem 3 (Efficient Update). For a node x called trigger
node, a solution to Problem 2 gains exact values of ecc(x).
Based on ecc(x), update the eccentricity-bounds of all nodes
in V without traversing the whole graph.

To speed up the computation, we allow the system to pre-
compute the following auxiliary structures:
1) for a reference node z that is pre-determined, the
distance dist(z, u) from z to all the nodes u in V can be
accessed monotonically: list Lz stores {u1, u2, · · · , un}
with dist(z, u1) ≤ dist(z, u2) ≤ · · · ≤ dist(z, un).

2) any 2-hop labeling method for the pair-wise shortest-
distance (PWSD) computation for the graph G; in
particular, the pruned landmark labeling (PLL)
structure with a parameter b (See Section II-A) answers
the shortest distance of any two nodes in O(b) time.

Note that, directly applying PLL to the eccentricity com-
putation necessitates n2 PWSD queries — impractical for
large graphs. In this paper, we consider PLL as a black box
for answering PWSD queries and propose novel techniques
to compute the eccentricities efficiently. Our techniques are
independent from the techniques in PLL.
In the following sections, we will address Problems 2 and 3

in Section III and IV, respectively.

787

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

III. Exacting Eccentricity for a Node

This section considers the node x with ecc(x) < ecc(x)
in Problem 2, aiming at computing ecc(x) efficiently. We
first introduce our techniques for a fixed reference node z in
Section III-A and then discuss how to practically tailor the
reference node z to the node of x in Section III-B.

A. Computing ecc(x) Under a Fixed Reference Node
The very reason that BFS has to traverse the whole graph

to get the eccentricity of x is the conflict between
• the non-decreasing order of the distances from nodes to

x in which BFS follows, and
• the max nature in ecc(x) among the distances of all nodes
to x.

If the order of BFS traversal can be reversed, then we can
use only O(1) time to access ecc(x). However, this ideal case
will not take place since the distance information for node x
is unavailable unless v is exactly the reference node z.
Utilize the pruned landmark labeling (PLL) structure. With
the tool of the PLL structure, one can get pair-wise shortest-
distance efficiently. This allows us to probe the distance
from x to a subset V ′ of nodes in V . By performing a max
aggregation over the exact distances from x to nodes in V ′,
we can partially evaluate of the eccentricity of v.

Definition 3 (partial-eccentricity). Given a subset V ′ ⊆ V ,
define the partial-eccentricity of x on V ′ as the eccentricity of x
on the set of V ′, denoted as pecc(x|V ′) = maxu∈V ′ dist(x, u).

Lemma 3. Let V ′ be a subset of V . pecc(x|V ′) ≤ ecc(x),
that is, partial-eccentricity provides a lower bound for the
eccentricity. Besides, pecc(x|V) = ecc(x).

Utilize the reference node z. To transfer the knowledge
gained on the reference node z to the computation of ecc(v),
we first introduce the definition of a bounded set with
bounded eccentricities.

Definition 4 (Bounded set). Given λ ≥ 0, the bounded set

V≤λ = {u ∈ V |dist(u, z) ≤ λ}.

Lemma 4 (Bounded Eccentricity). Given λ ≥ 0, the partial-
eccentricity of a bounded set of λ is also bounded:

pecc(x|V≤λ) ≤ dist(x, z) + λ.

Proof: According to Definition 3, ecc(x|V≤λ) =
maxu∈V≤λ

dist(x, u). For ∀u ∈ V≤λ, dist(x, u) ≤
dist(x, z) + dist(z, u) ≤ dist(x, z) + λ. Therefore,

ecc(x|V≤λ) = max
u∈V≤λ

dist(x, u) ≤ max
u∈V≤λ

(dist(x, z) + λ)

= dist(x, z) + λ. �

Definition 5 (Partial-set). Given λ ≥ 0, a set V ′ is called a
partial-set of λ, if V ′ ∪ V≤λ = V , namely, V ′ is a super set of
V \ V≤λ.

Example 5. Fig. 4 shows Lz for z = v2 of the running graph
in Fig. 1. Obviously, if x = z, we can determine ecc(x) =
3 directly from Lz. We also show V≤1 and V≤2 where V≤1
contains the first 7 nodes in Lz while V≤2 contains the first 9
nodes in Lz. The partial set V ′ with respect to λ = 2 can be

v2

0

v2 v1

1

v4

1

v5

1

v6

1

v7

1

v11

1

v3

2

v9

2

v8

3

v10

3

V 2

V 1
V’ w.r.t. 2

V’ w.r.t. 1

Lz:

Fig. 4. Illustration of Bounded Set and Partial Set (z = v2)

any subset of V that contains {v8, v10}; V ′ w.r.t. λ = 1 can be
any subset containing {v3, v9, v8, v10}. For x = v4 and λ = 2,
pecc(x|V≤λ) = maxv∈V≤λ

dist(x, v) = 2. Obviously, we have
pecc(x|V≤λ) ≤ dist(x, z) + λ = dist(v4, v2) + 2 = 3.

Utilize both the reference node z and the PLL. For a given λ,
we combine the information we get from the reference node
z and the partial-eccentricity on a partial-set of λ.

Lemma 5. Given a partial-set V ′ with parameter λ, the
eccentricity of x is:

ecc(x) =
{

pecc(x|V ′), if pecc(x|V≤λ) ≤ pecc(x|V ′)
pecc(x|V≤λ), otherwise

Proof: According to the definition of a partial-set, V ′ ∪
V≤λ = V , and the definition of the eccentricity ecc(x) =
maxu∈V dist(u, x), ecc(x) = max{pecc(x|V ′), pecc(x|V≤λ}.
Assume that at a time, for a given λ and a corresponding

partial-set V ′ of λ, pecc(x|V ′) is obtained using PLL while
pecc(x|V≤λ) is bounded by Lemma 4. Is it possible that we
can determine the eccentricity ecc(x)? The following theorem
provides a positive answer.

Theorem 1. Given a partial-set V ′ of parameter λ, if
pecc(x|V ′) ≥ dist(x, z) + λ, then ecc(x) = pecc(x|V ′).

Proof: From Lemma 4, pecc(x|V≤λ) ≤ dist(x, z) + λ. If
pecc(x|V ′) ≥ dist(x, z) + λ, then pecc(x|V ′) ≥ pecc(x|V≤λ).
According to Lemma 5, we have ecc(x) = pecc(x|V ′).

v2

0

v2 v1

1

v4

1

v5

1

v6

1

v7

1

v11

1

v3

2

v9

2

v8

3

v10

3

V 1

V’
V’

Case 1:

Case 2:

λ=1:

Lz:

Fig. 5. Illustration of V≤λ and V ′ for λ = 1 (z = v2)

Example 6. Suppose we would like to calculate ecc(v9).
Given parameter λ = 1 and reference node z = v2,
pecc(v9|V≤λ) = 3. Fig. 5 shows two cases to select the partial-
set V ′. In the first case, we have prcc(v9|V≤λ) > pecc(v9|V ′) =
2. We can thus compute ecc(v9) = pecc(v9|V≤λ). In the second
case, we have pecc(v9|V≤λ) ≤ pecc(v9|V ′) = 3. We can thus
compute ecc(v9) = pecc(v9|V ′). For case 2, we also have
pecc(v9|V ′) = 3 ≥ dist(v9, z) + λ = 3. Therefore, we can
compute ecc(v9) = pecc(v9|V ′) without knowing pecc(v9|V≤λ).

Theorem 1 leads to upper and lower bounds of ecc(x).

Lemma 6. Let V ′ be a partial-set of parameter λ.
max{pecc(x|V ′), dist(x, z) + λ} provides an upper bound on
ecc(x) while pecc(x|V ′) provides a lower bound on ecc(x).

When the upper bound meets the lower bound, we can
determine ecc(u) straightly. In this way, we can even leverage

788

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: EccentricityOneNode
Input: Node x, z, ecc(x), ecc(x), Lz, the PLL

structure
// Lz = {u1, u2, · · · , un} (Section II-C).
Output: ecc(x)

1 p ← 0 ; // p = pecc(x|V ′) where V ′ is initially
∅

2 for i takes from n down to 1 do
3 λ ← dist(z, ui−1);
4 Obtain dist(x, ui) by inquiring PLL;
5 p ← max{p, dist(x, ui)} ; // By absorbing ui,

V ′ is still a partial-set of λ,
p = pecc(x|V ′).

6 ecc(x)← max{ecc(x), p};
7 ecc(x)← min{ecc(x),max{p, dist(x, z) + λ}};
8 if ecc(x) = ecc(x) then return ecc(x);
9 return ecc(x)

the original upper and lower bound on u to narrow the gap.
Now we are ready to introduce our approach.
Exact eccentricity computation. Theorem 1 implies a way in
determining ecc(v): traverse nodes of V in a non-increasing
order of their distances to the reference node z; in this
process, update the upper bound and lower bound using
Lemma 6; terminate once the upper and lower bounds meet.
We describe such an approach in Algorithm 2.
Algorithm 2 decreases λ from dist(z, un) to 0 and grows

a conceptual partial-set V ′ of λ from ∅ to V accordingly.
Initially, pecc(v|V ′) = 0 since λ = dist(z, un) and thus V ′ = ∅
is a partial set of λ (Line 1). Then nodes in V are examined
in a reverse order of Lz (Line 2). For each node ui, λ is
set to be the distance from the reference node z to ui−1
(Line 3). Obviously, {u1, u2, · · · , ui−1} is a subset of V≤λ.
Conceptually, V ′ should be augmented with ui such that it
remains a partial-set of the newly updated λ. The partial-
eccentricity p = pecc(x|V ′) on V ′ is updated accordingly
(Line 4-5). The upper bound and lower bound of ecc(x)
are then updated Line 6-7. The loop will be terminated
immediately when the gap between the two bounds become 0
(Line 8). The entire loop transforms ecc(x) to ecc(x) (Line 9).

Theorem 2. Algorithm 2 reports the eccentricity of node x.

Proof: Lemma 6 ensures that the upper and lower bounds
of the eccentricity of x are correctly updated (Line 6-7).
Therefore, if the two bounds match, they match on ecc(x)
(Line 8). If the two bounds have not agreed by the end of the
loop when V ′ = V , then ecc(x) = pecc(x|V ′) = pecc(x|V) =
ecc(x) can be safely reported (Line 9) due to Lemma 3.

v2

0

v2 v1

1

v4

1

v5

1

v6

1

v7

1

v11

1

v3

2

v9

2

v8

3

v10

3

V’
V’

x=v9 i=11: λ=3 p=2 ecc(x)=2 ecc(x)=5
i=10: λ=2 p=2 ecc(x)=2 ecc(x)=3

V’ i=9: λ=2 p=2 ecc(x)=2 ecc(x)=3

V’ i=8: λ=1 p=2 ecc(x)=2 ecc(x)=3

V’ i=7: λ=1 p=3 ecc(x)=3 ecc(x)=3

Lz:

Fig. 6. The Process to Compute ecc(v9) (z = v2)

Example 7. Fig. 6 illustrates the process to compute ecc(x)
for x = v9 for the running graph shown in Fig. 1. Suppose
z = v2, for i = 11 (λ = 3), the algorithm first computes
dist(x, v10) = 2 by inquiring PLL, updates p to be 2 and
updates ecc(x) and ecc(x) to be 2 and 5 respectively. Then
for i = 10 (λ = 2), the algorithm computes dist(x, v8) = 1,
and update ecc(x) to be dist(x, z) + λ = 4 The process
continues until i = 7 (λ = 1), where the algorithm computes
dist(x, v11) = 3 and update p = 3 and ecc(x) = 3. At this
time we have ecc(x) = ecc(x), and therefore the algorithm
terminates by returning 3 as ecc(x).

Theorem 3. In the worst case, Algorithms 2 reports the
eccentricity of v in O(bn) time.

Proof: For node ui, i ∈ [1, n], Algorithms 2 computes
the exact distances from x to ui using the structure of PLL
in O(b) time. All other operations including the computation
of the distance from a node to the reference node z, can be
completed in O(1) time.

v1 v3 v4 v5 v6 v7 v8 v9 v10 v11

v10

2,4 3,3
v10

v3

v8

v9

2,4

2,4

2,3

2,5
v10

v8

3,3

2,4
v10

2,4
v10

3,4
v10

3,4
v10

3,6
v10

2,5
v10

3,6
v10

4,4

v8

3,3
v8

3,3
v8

3,3

v3

v8

v9

3,5

3,5

3,4
v3

v8

v9

2,4

2,4

2,3
v3

v8

v9

3,5

3,5

3,4

v8

2,3

v9

2,3

v3

2,2

v2

v11

4,4
v11

3,3
v11

4,4
v11

3,3

Fig. 7. Computing Eccentricity for All Nodes (z = v2)

Example 8. Fig. 7 demonstrates the process to compute the
eccentricity for all nodes in the running graph in Fig. 1 by
setting the reference node as z = v2. For example, for node
v1, we need to inquiry PLL for 4 times. The ecc and ecc values
after each PLL inquiry are also labelled beside each node. In
total, we have 33 PLL inquiries.

Remarks. Algorithm 2 is superior to BFS in practice:
1) Algorithm 2 boosts the computation of ecc(x) by lever-
aging the previously computed upper and lower bounds
for ecc(x). For example, if ecc(x) is smaller than ecc(x)
by a tiny margin, say 1, before Algorithm 2 starts, then
one only needs 1 effective update on either the upper or
the lower bound (in Line 6-7) to terminate Algorithm 2.

2) Algorithm 2 traverses the nodes in the reversing order
of their distances to the reference node z. If z is close
to x, then the farthest node to x will not be close to z.
Thus, the algorithm can terminate at an early-stage.

B. Reference-Node Pool
As observed from Section III-A (Remarks 2) and Lemma 2,

a reference node z in the vicinity of x can greatly boost
the computation of ecc(x) in Algorithm 2 through an early-
stop. Specifically, consider the case when dist(x, z) = 1. From
Lemma 2, ecc(z)−1 ≤ ecc(x) ≤ 1+ecc(z). Besides, by triangle

789

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: RefPool
Input: Graph G(V, E), k
Output: pool; Lz, ∀z ∈ pool; ecc(u) and ecc(u),

∀u ∈ V
1 Let pool be the k nodes in G with the highest degrees;
2 for each node z ∈ pool do
3 Lz ← a list of nodes in V in non-decreasing order

of their distances to z;
4 for each node u ∈ V do
5 update ecc(u) and ecc(u) using Lemma 2;

6 return as required.

inequality, ecc(z) − 1 ≤ dist(x, un) ≤ ecc(z) + 1. Here un is
the last element of Lz with ecc(z) = dist(z, un).

• If dist(x, un) = dist(z, un) + 1, we can immediately
terminate Algorithm 2. Note that, the chance of this
case is considerable since dist(z, un) + 1 is one of the
three values that dist(x, un) can possibly take.

• Otherwise, dist(x, un) provides a strong lower bound for
ecc(x): ecc(x) ≥ dist(x, un) ≥ ecc(z) − 1. Let u be
the node with dist(u, x) = ecc(x). Then dist(u, z) ≥
dist(u, x)− dist(x, z) ≥ ecc(x)− 1 ≥ ecc(z)− 2. That is,
once the λ = dist(ui−1, z) in Line 3, Algorithm 2, drops
below ecc(z)− 2, we can safely terminate the algorithm.

Example 9. Suppose we would like to compute ecc(x) for
x = v4 with reference node z = v2. Note that dist(x, z) = 1.
Therefore, in the worst case, we only need to visit those nodes
y with dist(y, z) ≥ ecc(z) − 2, which are {v10, v8, v9, v3}. As
shown in Fig. 7, we only visit {v10, v8} to compute ecc(v4).

The theorem below generalizes the analysis on the case of
dist(x, z) = 1.

Theorem 4. Denote dist(x, z) as λ0. Let y be the most
remote node to x, that is, ecc(x) = dist(y, x). Then

dist(y, z) ≥ ecc(z)− 2λ0.

Therefore, it suffices for Algorithm 2 to visit all nodes in {v ∈
V |dist(v, z) ≥ ecc(z)− 2λ0} to determine ecc(x).

Proof: From Lemma 2, ecc(z) − λ0 ≤ ecc(x) =
dist(y, x) ≤ dist(y, z) + dist(x, z) = dist(y, z) + λ0
Interestingly, this observation combined with the properties

of a small-world network provides a simple yet effective
solution for reference node selection — reference-node pool.
In Algorithm 3, we set a parameter k as the size of the

reference-node pool, and then let the reference nodes be the
k nodes in G(V, E) with the highest degrees (Line 1). This
simple setting does not burden the entire computation. In
addition, reference-node pool facilitates an easy way to setup
the initial upper and lower bounds for the eccentricity of each
node (Line 4-5).
As we shall see in Algorithm 5 (Line 4), at running time,

each node will choose the closest node from the reference node
pool as its reference node.

Example 10. In the running example, graph G is shown in
Fig. 1. Let k = 2. Select 2 nodes with the highest degree in

v1 v3 v4 v5 v6 v7 v8 v9 v10 v11

2,2 3,3
v11

3,3
v10

v8

3,3

2,3
v10

2,3
v10

2,3
v10

2,3
v11

4,4
v11

3,3
v11

4,4
v10

4,4

v8

3,3
v8

3,3
v8

3,3

v2

v1 v2 v1 v2 v2 v2 v2 v1 v1 v1 v2

Fig. 8. Eccentricity Computation (pool = {v1, v2})

G as the reference-node pool: pool = {v1, v2}. The process of
computing the eccentricity for all nodes in G is then shown in
Fig. 8. The reference node selected for each node is colored in
black. For example, for node x = v3, v1 instead of v2 is selected
as the reference node since dist(v2, v3) > dist(v1, v3). Using v1
as the reference node, one only needs to obtain dist(v3, v11) =
3 to terminate the algorithm with ecc(v3) = 3 by inquiring
PLL. Compared to Example 8, by using the reference-node pool,
the number of PLL inquiries is brought down from 33 to 13.

In a small-world network, some nodes have much more con-
nections than the other nodes. By choosing a small number
of prominent hubs as reference-nodes, a node x is highly
likely to find a reference node in the pool in its vicinity,
that is, on average, the distance d(x, z) from a node x to its
reference node z is relatively small, as will be demonstrated
in the experiment (Exp-5, Section VI). To determine ecc(x),
it suffices to scan only the nodes whose distances fall in to
this narrow range, as indicated by Theorem 4.

IV. Update Optimization

This section dedicates to Problem 3 in Section II-C, that
is, to efficiently update the eccentricity-bounds based on the
eccentricity ecc(x) of the trigger node x.
To avoid an exhaustive enumeration of nodes in V , consider

the following rules on neighboring nodes in the graph. Apply-
ing Lemma 2 to u, v with dist(u, v) = 1, we have Lemma 7.

Lemma 7. For each (u, v) ∈ E (or equivalently (v, u) ∈ E):

ecc(u)− 1 ≤ ecc(v) ≤ ecc(u) + 1.

Lemma 7 indicates that the eccentricity-bounds on neigh-
boring nodes differ by at most one. We call the eccentricity-
bounds stable if it satisfies Lemma 7.

Definition 6 (Stable State). The eccentricity-bounds are
stable, if for each edge (u, v) ∈ E:

ecc(u) ≤ ecc(v) + 1, and (4)
ecc(u) ≥ ecc(v)− 1. (5)

Example 11. The eccentricity-bounds shown in Fig. 9 (a)
are stable. For example, for adjacent nodes v3 and v10, we
have ecc(v10) ≤ ecc(v3) + 1 and ecc(v3) ≥ ecc(v10)− 1.
Lemma 7 can be applied globally to iteratively update the

eccentricity-bounds. The process is called Iterative-Update
and will be shown in Section IV-A. Magically, the iterative-
update is effectively applying the first two rules of Lemma 2,
as will be proved in the weak bounds (Lemma 9). More im-
portantly, the iterative-update can be dramatically optimized

790

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

v1

v4

v3

v5

v2

v6

v7 v9

v11 v10

v82,4
2,5

3,6

2,5 3,6

2,4

3,3

2,4
2,4

2,4

2,4

v1

v4

v3

v5

v2

v6

v7 v9

v11 v10

v8
2,5

3,6

2,5 3,6

2,4

2,4
2,4

2,4

2,4 4,43,5

3,5
2,42,4

3,33,3

(a) A Stable State (b) Local Spread

Fig. 9. Local Spread: Before and After Updating the Bounds of v10

(Theorem 5) with an efficient local-spread update algorithm,
as shall be introduced in Section IV-B.

A. Iterative-Update.
This subsection describes an iterative update process of

the eccentricity-bounds from one stable state to another
stable state in accordance with the update of the eccentricity-
bounds of the trigger node x.
Assume that the eccentricity-bounds are stable

(Definition 6) before the update. For the simplicity of
the presentation, we conceptually take a snapshot of the
eccentricity-bounds as {eccold(u), eccold(u)}, for ∀u ∈ V .

Let the new upper and lower eccentricity-bounds for the
trigger node x be ubx and lbx, respectively. If ecc(x) is
available, then ubx = lbx = ecc(x). The process has two steps.
1) Update the eccentricity-bounds of x with ubx and lbx:

a) ecc(x)← min{eccold(x), ubx}
b) ecc(x)← max{eccold(x), lbx}

2) The eccentricity-bounds are updated in an iterative
manner based on Lemma 7, and terminates when
eccentricity-bounds become stable. Specifically, for one
update of an edge (l, r) ∈ E or equivalently (r, l) ∈ E:
a) ecc(l)← min{ecc(l), ecc(r) + 1}
b) ecc(l)← max{ecc(l), ecc(r)− 1}

For the same reason, we conceptually take a snapshot of the
eccentricity-bounds as {eccnew(u), eccnew(u)}, ∀u ∈ V , after
the iterative-update process.

B. Local-spread.
Next, we will first introduce a favorable property of

iterative-update. As will be proved by Lemmas 10 and 11,
Theorem 5 shows that the iterative-update effectively tighten
the eccentricity-bounds in a connected subgraph of G “cen-
tered” at the trigger node x, which enables a remarkable
optimization over the iterative-update.

Theorem 5 (Update Locality). Let V ′ be {y ∈ V |eccold(y) >
eccnew(y) or eccold(y) < eccnew(y)}. If V ′ is not empty, then
graph G′(V ′, E′) defined with E′ = {(u, v) ∈ E|u, v ∈ V ′} is
a connected graph. That is, for any two nodes a, b in V ′, there
is a path of G′ from a to b. Besides, for each node y in V ′,

• eccnew(y) = min{eccold(y), ubx + dist(x, y)}
• eccnew(y) = max{eccold(y), lbx − dist(x, y)}.

Theorem 5 enables us to design a local-spread update
approach in Algorithm 4. To update on the eccentricity-
bounds triggered by node x, we visit the nodes in V in the

Algorithm 4: LocalSpread
Input: Node x, ubx, lbx, a stable eccentricity-bounds.
Output: A stable eccentricity-bounds
// All eccentricity-bounds are clean. A bound

b gets dirty once it is updated, which can
be materialized by setting a field of b
with x.

1 ecc(x)← min{ecc(x), ubx}, ecc(x)← max{ecc(x), lbx};
2 Q ← a empty queue;
3 if either ecc(x) or ecc(x) is dirty then add x to Q;
4 while Q is not empty do
5 u ← Q.pop(); mark u as visited;
6 if either ecc(u) or ecc(u) is dirty then
7 for each unvisited neighbor v of u do
8 ecc(v)← min{ecc(v), ubx + dist(v, x)};
9 ecc(v)←

max{ecc(v), lbx − dist(v, x), dist(v, x)};
10 if either ecc(v) or ecc(v) is dirty then
11 add v to Q if v is not in Q;

style of Breadth-First-Search (Line 2,5). If one node u is not
affected by the update on the trigger node x, then the node
expansion on u is banned (Line 3,6,10). All the distances
(Line 8-9) are obtained via BFS rather than pairwise distance
queries. A state checking operation (Line 3,7,10,11) can be
done in O(1) time by associating proper labels to the bounds.
The search terminates when the area affected by the update
on the trigger node x is traversed (Line 4).

Lemma 8 (Complexity). Let set V ′ = {y ∈ V |eccold(y) >
eccnew(y) or eccold(y) < eccnew(y)} be the set of nodes
that has been affected by the update on the trigger node x.
The complexity of Algorithm 4 is O(Σv∈V ′deg(v)). Denote by
deg(v) the degree of node v in the graph G(V, E).

Example 12. Fig. 9 (a) shows a stable state for the graph in
Fig. 1 of the running example. Suppose we calculate ecc(v10) =
4, we update ecc(v10) = ecc(v10) = 4. Using local spread, for
the neighbor v3 of v10, we update ecc(v3) to be 3. For the
neighbor v8 of v10, we update ecc(v8) to be 5. After local spread,
the state becomes stable again as shown in Fig. 9 (b).

Correctness of Theorem 5. Iterative-update tightens the
eccentricity-bounds iteratively without specifying the
convergence rate. To quantify the margin between the
old and new snapshots, we found bounds on the margins:
Lemma 9 (weak), 10 (strong), and 11 (strong), respectively.
We place the proofs of Lemma 9 and 10 in the Appendix.

Lemma 11 can be proved by applying the proof on the upper
bounds of Lemma 10 symmetrically to the lower bounds.

Lemma 9 (Weak bounds). For any node v ∈ V other than
u in the graph,

eccnew(u) ≤ min{eccold(u), eccnew(x) + dist(x, u)} (6)
eccnew(u) ≥ max{eccold(u), eccnew(x)− dist(x, u)} (7)

Lemma 10 (Strong upper bounds). For each node y ∈ V
with eccnew(y) < eccold(y), there exists a shortest path

791

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

〈u0, u1, · · · , uk〉 from x to y with k = dist(y, x) such that
1) for each i ∈ [0, k], eccnew(ui) = ubx + dist(ui, x).
2) for each i ∈ [0, k], eccnew(ui) < eccold(ui).
3) eccnew(x) = ubx.

Lemma 11 (Strong lower bounds). For each node y ∈ V
with eccnew(y) > eccold(y), there exists a shortest path
〈u0, u1, · · · , uk〉 from x to y with k = dist(y, x) such that
1) for ∀i ∈ [0, k], eccnew(ui) = eccnew(x)− dist(ui, x).
2) for ∀i ∈ [0, k], eccnew(ui) > eccold(ui).
3) eccnewx = lbx.

C. Put All Parts Together
We now have all parts in the puzzle of exacting eccen-

tricity completed in Algorithm 5. We pre-compute an aux-
iliary structure PLL for efficiently answer pair-wise shortest-
distance queries (Line 1). Select the reference-node pool with
k nodes (Line 2). For each node v ∈ V (Line 3), we first
find the reference node in the pool with the smallest distance
to x (Line 4), then use the reference node to compute the
exact eccentricity of x (Line 5). After that, we use ecc(x) to
update the eccentricity-bounds (Line 6). Finally, we are able
to report the eccentricities of all nodes in V (Line 7). The
correctness of Algorithm 3-5 can be easily guaranteed by the
triangle inequality, Lemma 2 and Lemma 7.

Theorem 6. In expectation, each call of LocalSpread updates
the eccentricity of O(d) nodes.

Proof: According to Theorem 5, a node y ∈ V is
updated by LocalSpread only when ecc(y) is increased to
ecc(x)+dist(x, y) or ecc(y) is decreased to ecc(x)−dist(x, y)
upon ecc(x) of the corresponding trigger node x. Note that
ecc(x) + dist(x, y) ≤ 2d, here d is the diameter of the
graph. Thus, after the first update on ecc(y), ecc(y) will be
decreasing within the range of [0, 2d]. Therefore, ecc(y) will
be updated at most 2d + 1 times. We can similarly prove
that ecc(y) will be updated at most d + 1 times. In total,
LocalSpread will update the eccentricity bounds of y at most
3d+1 times. The total of O((3d+1)n) updates over all nodes
took place in n calls of LocalSpread, each call thus updates
O(d) nodes in expectation.

Lemma 12. The time complexity on updating the
eccentricity-bounds in Algorithm 5 in total is O(dm).

Proof: According to Lemma 8, the adjacency list of a
node y ∈ V is visited by LocalSpread only when a bound
of y is updated. Since each node is updated O(d) times
and each update reads through the corresponding node’s
adjacency list, therefore, the total time for LocalSpread is
O(d · ∑

v∈V deg(v)) = O(dm).
Remarks. The worst-case complexity of Algorithm 5 is
quadratic, however,

• Algorithm 5 determines the eccentricity of a node x at an
early-stage by i) searching from remote nodes of x guided
by a reference node that is close to x; and ii) inheriting
the eccentricity-bounds of x from the outer-loop which
terminates the search whenever the bounds meet.

• Each call of LocalSpread updates the eccentricity-bounds
of O(d) nodes in O(dm

n) time in expectation (Lemma 12).

Algorithm 5: ECC-LS
Input: Graph G(V, E), k
Output: ecc(u) for each u ∈ V

1 PLL ← the PLL structure of G(V, E);
2 pool, Lz,eccentricity-bounds ← RefPool(G(V, E), k);
3 for each node x ∈ V do
4 z ← the node in the pool that is nearest to x;
5 ecc(x)←

EccentricityOneNode(x, z, ecc(x), ecc(x), Lz, PLL);
6 LocalSpread(x, ecc(x), ecc(x),eccentricity-bounds);
7 return ecc(u), ∀u ∈ V

Since a small-world network has a small d (d < 40 for
all datasets in Table II), the update can be regarded as
near-linear.

Therefore, within the loop of a node in V (Line 3, Algo-
rithm 5), the practical cost is far less than n. In this sense,
our algorithm is more efficient than its counterparts.

V. Related work

Exact Eccentricity. A straightforward method to compute
the exact eccentricity for all nodes is to apply all-pairs
shortest path (APSP) algorithms or to pose pair-wise shortest
distance (PWSD) queries quadratic times. These algorithms,
however, require a high time complexity and thus are im-
practical to handle large graphs [10]. Although optimization
strategies are proposed [11], [12], their approaches still cannot
scale to handle large real-world graphs. An efficient approach
to the PWSD problem is called Pruned Landmark Labeling
(PLL) [9]; its detail has been introduced in Section II-A.
In the literature, to compute the exact eccentricity, Hen-

derson [13] speeds up the computation by making use of
articulation points and eccentricity bounds. The state-of-the-
art algorithm is proposed by Takes et al. [8], which has been
introduced in Section II-B in details. Borassi et al. [14] focus
on the “directed” aspect of the diameter/radius computation
on directed graphs; their techniques fall into the framework
of [8] when it comes to undirected scenarios.
As a related problem, graph diameter is defined as the

maximum eccentricity among all nodes. A pruning based
method to compute the graph diameter is introduced in [15]
and the method is further improved by Akiba et al. [16] using
eccentricity bounds propagation.
Approximate Eccentricity. In the literature, because of the
huge computational cost for exact eccentricity, several ap-
proaches focus on approximate eccentricity computation. A
straightforward approach is to adopt the approximate APSP
[17]. However, this method does not consider the proper-
ties involved in eccentricity. Roditty et al. [4] presents an
algorithm to estimate eccentricity ẽcc(v) using sampling.
ecc(v) is bounded by [23 ẽcc(v), 3

2 ẽcc(v)], for each node v in
an undirected and unweighted graph. The time complexity is
O(m

√
n logn). The method is further improved by Chechik

et al. [5] by transforming the graph to a bounded-degree
graph. ecc(v) is bounded by [ẽcc(v), 5

3 ẽcc(v)]. The complexity
is O((m logm) 3

2). Recently, Shun [18] parallelized existing
approximate algorithms for eccentricity computation. Real
world scale-free graphs such as social networks usually have a

792

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

very small diameter. Therefore, approximate algorithm may
lead to undesirable errors for such networks.
Other Graph Centrality Measures. In addition to graph ec-
centricity, there are some other famous graph centrality mea-
sures. For example, closeness centrality, which is the inverse
of the average shortest distance from the vertex to any other
vertex in the graph [19], is useful to measure the efficiency
of each vertex in spreading information to all other vertices.
Betweenness centrality, which is the fraction of shortest paths
between node pairs that pass through the target node [20],
is used to measure the ability of a node to control the
information flow between other nodes. A recent survey of
graph centrality measures and their application in different
domains can be found in [21].

VI. Experiments

Algorithms.We compare our proposed algorithms against the
state-of-the-art algorithm BoundEcc [8] for exact eccentricity
computation. Three node ordering strategies introduced in [8]
are used as the following three baseline methods:

• Degree: The nodes are visited in non-increasing order of
their degrees.

• MaxGap (and MinGap, resp.): The node with the max-
imum (and minimum, resp.) eccentricity upper bound
and the node with minimum (and maximum, resp.)
eccentricity lower bound are visited alternatively.

Our techniques include the following two methods:
• ECC: Invoke EccentricityOneNode for each node in the
graph. (Algorithm 2 in Section III).

• ECC-LS: Update the eccentricity-bounds using the local-
spread technique. (Algorithm 5 in Section IV).

Each of ECC and ECC-LS contains the following three
phases. The first two phases are shared by ECC and ECC-LS.

• Labeling: compute the PLL structure for the graph [9].
• RefPool: compute the reference-node pool, the lists Lz

for each z in the pool, and the initial ecc and ecc for
each node of the graph(Algorithm 3 in Section III-B).

• Eccentricity: compute the eccentricity-distribution.
The cost were evaluated in the wall-clock time, the cut-off

time was set to 24 hours. The costs of the three phases were
evaluated respectively. By default, the number of reference
nodes was set to be k = 16; otherwise, the varying number k
of reference nodes ranged from 1 to 32. All algorithms were
implemented in C++ and compiled with GNU GCC 4.4.7
and -O3 level optimization. All experiments were conducted
on a machine with an Intel Xeon 3.1GHz CPU and 128 GB
main memory running Linux (Red Hat Linux 4.4.7, 64bit).
Datasets. Our experiments were conducted on 20 real-world
graphs with various properties. The first 9 graphs are online
social networks. Grqc, Hepth, Hepph, Astroph, and Cond-
mat are collaboration networks. Askubuntu and Superuser
are interaction networks on the stack exchange website —
nodes represent users and edges indicate the answer and
comment relationships. Wiki-vote, Wiki-temporal and Wiki-
talk are communication networks while Web-stanford is a web
graph. All graphs are considered as undirected and connected
graphs: if a graph is not connected, we used the largest
connected component of the graph. The details, that are,
the total number of nodes n, the total number of edges m,

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(a) DBLP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(b) Wiki-talk

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(c) Twitter

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(d) Slashdot

Fig. 10. Testing ECC (Varying # Reference Nodes)

radius r and diameter d, of all graphs are presented in Table
II. The largest diameter is 24, and the smallest diameter
is 7. The average label size for PLL is no larger than 100
on most graphs. All graphs were downloaded from Stanford
Large Network Dataset Collection3 [22].
Exp-1: Comparison with the State-of-the-art. This
experiment compares our algorithm ECC with Degree,
MaxGap, and MinGap. The results are shown in Table II.
Firstly, Table II shows that the performance of BoundEcc

is sensitive to the node order. For instance, MinGap needs
only 0.56 seconds to compute the results of Facebook while
the other two methods need 13.05 seconds and 7.1 seconds,
respectively. The performance of our proposed method is not
sensitive to the node order.
Secondly, Table II indicates that our method ECC outper-

forms BoundEcc on all types of graphs by up to three orders
of magnitude. ECC is, on average, 203.03 times faster than
BoundEcc. For example, on Brightkite, ECC is more than 162
times faster than MinGap while MinGap is the best node order
of BoundEcc among the three. On Wiki-temporal, ECC is 467
times faster than MaxGap.
For Youtube, our ECC algorithm had completed the eccen-

tricity computation in 10 minutes while the state-of-the-art
algorithms had not terminated within 24 hours.
Finally, we observe that, in the three phrases of our pro-

posed algorithm ECC, the time for Labeling dominates the
overall cost for most of the graphs. The actual time used
for Eccentricity is no more than 100 seconds on all graphs.
This means that ECC can be naturally scaled to handle larger
graphs upon an accelerated labeling method.
In a nutshell, the results in Table II demonstrate that our

proposed method is superior to the state-of-the-art methods.
Exp-2: Testing ECC.This experiment shows the performance
of ECC under a varying number k of reference nodes. k ranges
from 1 to 32. Since the time for Labeling is independent of
the number of reference nodes, we only report the processing
time for RefPool and Eccentricity. The experimental results
are shown in Fig. 10. Due to the space limitation, we show
the experimental results for four representative large graphs
— DBLP, Wiki-talk, Twitter, and Slashdot.
Fig. 10 indicates that the time for RefPool increases with

an increasing k; and the time for Eccentricity decreases with
3http://snap.stanford.edu/data/

793

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

TABLE II
Data Set Description and Comparison with the State-of-the-art Methods

Statistical Information Proposed Algorithm ECC (Sec) BoundEcc (Sec) PLL
Dataset n m r d Labeling RefPool Eccentricity Total Degree MaxGap MinGap Avg Label Size

Facebook 4 039 88 234 4 8 0.38 0.04 0.01 0.43 13.05 7.1 0.56 53.73
Brightkite 56 739 212 945 9 18 3.48 0.49 0.13 4.1 2222.23 614.38 664.78 64.87
Epinions 75 877 405 739 8 15 4.61 0.62 0.3 5.53 5052.3 175.66 163.87 59.18
Slashdot 77 360 469 180 6 12 7.18 0.73 0.65 8.56 3838.07 541.12 555.21 66.89
Twitter 81 360 1 342 296 4 7 14.95 0.85 68.29 84.09 6221.46 1268.25 1354.23 70.17
Gowalla 196 591 950 327 8 16 31.82 2.13 0.36 34.31 30764.32 2078.67 1060.48 91.57
DBLP 317 080 1 049 866 12 23 272.58 3.45 14.53 290.56 72798.26 2647.04 2945.94 263.57

Youtube 1 134 890 2 987 624 12 24 260.52 14.19 8.17 282.88 − − − 115.04
Flicker 1 624 992 15 476 835 12 24 3090.03 22.09 16.22 3128.34 − 7003.67 6165.31 353.29
Grqc 4 158 13 422 9 17 0.1 0.03 0.05 0.18 8.16 0.83 0.84 53.11

Hepth 8 638 24 806 10 18 0.28 0.07 0.04 0.39 35.81 2.56 2.72 60.56
Hepph 11 204 117 619 7 13 0.79 0.08 0.13 1 109.03 11.3 12.76 63.44

Astroph 17 903 196 972 8 14 2.06 0.15 0.21 2.42 279.23 29.84 30.56 75.35
Condmat 21 363 91 286 8 15 1.3 0.2 0.11 1.61 277.08 24.82 25.01 69.19

Askubuntu 152 599 453 221 7 13 6.45 1.58 0.29 8.32 17981.26 193.13 187.17 54.56
Superuser 189 191 712 870 6 12 9.73 1.98 0.74 12.45 29158.28 2051.17 2134.05 57.35
Wiki-vote 7 066 100 736 4 7 0.48 0.06 0.05 0.59 45.95 3.49 4.26 51.41

Wiki-temporal 1 091 742 2 786 764 5 9 54.16 12.14 23.43 89.73 − 41945.19 40614.19 56.02
Wiki-talk 2 388 953 4 656 682 6 11 132.34 27.87 22.17 182.38 − 9431.34 9281.13 61.68

Web-stanford 266 388 2 228 348 5 9 122.86 3.46 4.33 130.65 71121.36 3848.26 3917.98 143.89

100

101

102

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(a) DBLP

100

101

102

103

104

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(b) Wiki-talk

101

102

103

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(c) Twitter

10-1

100

101

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(d) Slashdot

Fig. 11. Testing ECC-LS (Processing Time for Eccentricity)

the increasing k. k reference nodes incur k BFSs, thus the
time of RefPool increases with k. The efficiency of Eccentricity
for one node u is dependent on the distance dist(u, z) from
u to its reference node z (Theorem 4) while an enlarged the
reference-node pool decreases dist(u, z). Therefore, increasing
k reduces the cost of Eccentricity.
Fig. 10 also shows a trade-off between RefPool and

Eccentricity in ECC. For graphs Wiki-talk and Slashdot, the
running time first decreases and then increases with an
increasing k; for graphs DBLP and Twitter, the running time
drops with an increasing k. The results over all graphs suggest
that k = 16 is a reasonable number of reference nodes to
balance the cost for RefPool and Eccentricity.
Exp-3: Testing ECC-LS. This experiment examines the local-
spread technique by comparing ECC with ECC-LS. Since ECC
and ECC-LS have the same costs for Labeling and RefPool, we
only report the cost of the third phase — Eccentricity.
Fig. 11 reports the processing time on four representative

graphs DBLP, Wiki-talk, Twitter, and Slashdot when varying
the number k of reference nodes. Firstly, the processing time
for both ECC and ECC-LS increases with an increasing k.
Secondly, local-spread speeds up the Eccentricity by tight-

106

107

108

1 2 4 8 16 32

P

LL
 E

nq
ui

rie
s

Reference Nodes

ECC
ECC-LS

(a) DBLP

106

107

108

109

1010

1 2 4 8 16 32

P

LL
 E

nq
ui

rie
s

Reference Nodes

ECC
ECC-LS

(b) Wiki-talk

107

108

109

1 2 4 8 16 32

P

LL
 E

nq
ui

rie
s

Reference Nodes

ECC
ECC-LS

(c) Twitter

105

106

107

1 2 4 8 16 32

P

LL
 E

nq
ui

rie
s

Reference Nodes

ECC
ECC-LS

(d) Slashdot

Fig. 12. Testing ECC-LS (# PLL Inquiries)

 0

 2

 4

 6

 8

 10

 12

 14

10% 20% 30% 40% 50% 60% 70% 80% 90%100%

T
im

e
C

os
t (

s)

Percentage of Edges

Labeling
RefPool

Eccentricity

(a) Superuser

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

10% 20% 30% 40% 50% 60% 70% 80% 90%100%

T
im

e
C

os
t (

s)

Percentage of Edges

Labeling
RefPool

Eccentricity

(b) Wiki-temporal

Fig. 13. Scalability Testing

ening the eccentricity-bounds: ECC-LS outperforms ECC on
Eccentricity by a factor of 2 to 10.
We also report the number of PLL inquiries for ECC and

ECC-LS in Fig. 12 when varying the number of reference
nodes. The trend is similar to that for the processing time
in Fig. 11. For example, for the DBLP dataset, when the
number of reference nodes is 4, ECC is 3 times slower than
ECC-LS while the number of PLL inquiries for ECC is 3 times
larger than ECC-LS. This shows that the processing time for
Eccentricity is proportional to the number of PLL inquiries.
Exp-4: Scalability Testing. Temporal graphs Superuser and
Wiki-temporal were selected for the scalability test. Edges
of a temporal graph are associated with timestamps. For
each graph, edges were sorted in the ascending order of their

794

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 1 2 3 4 5 6 7 8 9 10 11

P
er

ce
nt

ag
e

Distance

(a) DBLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 1 2 3 4 5

P
er

ce
nt

ag
e

Distance

(b) Wikitalk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 1 2 3 4

P
er

ce
nt

ag
e

Distance

(c) Twitter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 1 2 3 4 5 6

P
er

ce
nt

ag
e

Distance

(d) Slashdot

Fig. 14. Testing Distribution of Distance to Reference Nodes

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(a) DBLP

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(b) Wikitalk

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(c) Twitter

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(d) Slashdot

Fig. 15. Testing Average Distance to Reference Nodes

timestamps. The first 10%, 20%, . . ., 100% of the sorted edges
consisted a series of 10 generated-graphs, respectively, with
increasing sizes. Each generated-graph is a real-world graph
with the similar graph properties as the original graph.
Fig. 13 demonstrates the processing time for the three

phases Labeling, RefPool, and Eccentricity, respectively, of
our algorithm ECC, on the three graphs. When the graph
size increases, the processing time for all three phases
Labeling, RefPool, and Eccentricity increases. The three
phrases Labeling, RefPool, and Eccentricity share a linear trend
with an increasing graph size. This indicates that ECC has
a high scalability. The curves for ECC-LS in scalability are
similar to those of ECC, which are not shown in the paper
due to the space limitation.
Exp-5: Testing Distance to Reference Nodes. Fig. 14 shows
the distribution of the distance λ0(u) from a node u to its
reference node z on four representative graphs DBLP, Wiki-
talk, Twitter, and Slashdot. The reference node z of u is the
node that is nearest to u in the reference-node pool. The
number k of reference nodes was set to be 16. For DBLP,
most distances fall into the range of [2, 5]. For the other three
graphs, more than 60% of nodes u have λ0(u) ≤ 2; for all the
nodes u in the graph, λ0(u) ≤ 6.
Fig. 15 illustrates the average distance of a node to its

nearest reference node when varying the number of reference
nodes k from 1 to 32 on the four graphs. The average distance
decreases with an increasing k on all graphs. When there is
only one reference node (k = 1), the average distance is 4.6

for DBLP and less than 3 on the other three graphs. When
k = 32, the average distance decreases to less than 3.5 for
DBLP and less than 2 on the other three graphs. This result
justifies the claim in Section III-B.
Exp-6: Comparison with an Approximate Method. The neces-
sity of an exact eccentricity computation can be justified by
comparing the approximate radius, diameter, and eccentrici-
ties obtained from a method suggested by the SNAP website4
with the exact ones, respectively. This method samples 1000
random nodes and estimates the eccentricity of each node
v in the graph as v’s largest distance to the sample nodes,
denoted as ẽcc(v). The approximate radius and diameter are
derived from r̃ = minv∈V ẽcc(v) and d̃ = maxv∈V ẽcc(v).
The approximation is measured in the five ratios below.

Correct ratio CR is the percentage of the nodes in the graph
whose eccentricities are correctly estimated. The average
ratio and minimum ratio are defined, respectively, as AR =
1
n

∑
v∈V

ẽcc(v)
ecc(v) and MR = minv∈V

ẽcc(v)
ecc(v) . The radius ratio and

diameter ratio are RR = r̃/r and DR = d̃/d, respectively.
Fig. 16 shows the five ratios in percentage over the 20

datasets. It is observed that this approximation method only
works well when the size of the sample, that is, 1000, is
comparable to the size of the graph n; when n increases, the
performance deteriorates severely. For example, the Facebook
graph with 4039 nodes enjoys a precise estimation while the
larger graphs such as Flicker, wiki-temporal, Wiki-talk, and
Gowalla suffer an almost zero CR value: few nodes know their
correct eccentricities. This observation applies to diameter
and radius as well. On Youtube, the errors of radius and
diameter reach 4 and 5, respectively, intolerable given the real
radius 12 and diameter 24. This echoes our motivation: an
efficient exact eccentricity computation is highly demanded.

VII. Conclusions

We provided, in this paper, a spectrum of insights into
the bottleneck of existing approaches on the eccentricity
computation of a graph. These insights led to a suite of
techniques on eccentricity computation on undirected and un-
weighted graphs. The superior efficiency has been confirmed
by a comprehensive experimental evaluation. Actually, all our
techniques are adaptable to directed and unweighted graphs,
the corresponding techniques are left to the extended version
due to the space limit. We think that developing an efficient
eccentricity computation approach is important to big graph
processing and analysis and will look into this problem on
dynamic graphs in future.

Acknoledgement

Lu Qin is supported by ARC DP160101513. Ying Zhang
is supported by ARC FT170100128 and DP180103096. Lijun
Chang is supported by ARC DP160101513 and DE150100563.
Xuemin Lin is supported by NSFC 61672235, DP170101628
and DP180103096.

References

[1] D. West, Introduction to Graph Theory. Prentice Hall, 2001.
[2] T. M. Chan, “All-pairs shortest paths for unweighted undirected

graphs in o(mn) time,” in SODA, 2006, pp. 514–523.

4https://snap.stanford.edu/data/index.html

795

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

0
10
20
30
40
50
60
70
80
90

100

Facebook

Brightkite

Epinions

Slashdot

Twitter

Gowalla

DBLP
Youtube

Flicker

Grqc
Hepth

Hepph
Astroph

Condmat

Askubuntu

Superuser

Wiki-vote

Wiki-temporal

Wiki-talk

Web-stanford

P
er

ce
nt

ag
e

(%
)

CR AR MR RR DR

Fig. 16. Comparison with an Approximate Method

[3] R. Williams, “Faster all-pairs shortest paths via circuit complexity,”
in STOC, 2014, pp. 664–673.

[4] L. Roditty and V. V. Williams, “Fast approximation algorithms
for the diameter and radius of sparse graphs,” in STOC, 2013, pp.
515–524.

[5] S. Chechik, D. H. Larkin, L. Roditty, G. Schoenebeck, R. E. Tarjan,
and V. V. Williams, “Better approximation algorithms for the graph
diameter,” in SODA, 2014, pp. 1041–1052.

[6] D. J. Watts and S. H. Strogatz, “Collective dynamics of’small-
world’networks.” Nature, vol. 393, no. 6684, pp. 409–10, 1998.

[7] J. Guare, Six Degrees of Separation: A Play, ser. Vintage Series.
Vintage Books, 1990.

[8] F. W. Takes and W. A. Kosters, “Computing the eccentricity
distribution of large graphs,” Algorithms, vol. 6, no. 1, pp. 100–118,
2013.

[9] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path
distance queries on large networks by pruned landmark labeling,”
in SIGMOD, 2013, pp. 349–360.

[10] D. B. Johnson, “Efficient algorithms for shortest paths in sparse
networks,” JACM, vol. 24, no. 1, pp. 1–13, 1977.

[11] P. S. Almeida, C. Baquero, and A. Cunha, “Fast distributed com-
putation of distances in networks,” in Proc. of CDC’12, 2012, pp.
5215–5220.

[12] M. Then, M. Kaufmann, F. Chirigati, T. Hoang-Vu, K. Pham,
A. Kemper, T. Neumann, and H. T. Vo, “The more the merrier:
Efficient multi-source graph traversal,” VLDB, vol. 8, no. 4, pp.
449–460, 2014.

[13] K. Henderson, “Opex: Optimized eccentricity computation in
graphs,” Lawrence Livermore National Laboratory (LLNL), Liv-
ermore, CA, Tech. Rep., 2011.

[14] M. Borassi, P. Crescenzi, M. Habib, W. A. Kosters, A. Marino, and
F. W. Takes, “Fast diameter and radius bfs-based computation in
(weakly connected) real-world graphs: With an application to the
six degrees of separation games,” Theor. Comput. Sci., vol. 586, pp.
59–80, 2015.

[15] F. W. Takes and W. A. Kosters, “Determining the diameter of small
world networks,” in CIKM, 2011, pp. 1191–1196.

[16] T. Akiba, Y. Iwata, and Y. Kawata, “An exact algorithm for
diameters of large real directed graphs,” in ESA, 2015, pp. 56–67.

[17] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani, “Fast esti-
mation of diameter and shortest paths (without matrix multiplica-
tion),” SIAM J. of Comp., vol. 28, no. 4, pp. 1167–1181, 1999.

[18] J. Shun, “An evaluation of parallel eccentricity estimation algo-
rithms on undirected real-world graphs,” in SIGKDD, 2015, pp.
1095–1104.

[19] K. Okamoto, W. Chen, and X. Y. Li, “Ranking of closeness cen-
trality for large-scale social networks,” Lecture Notes in Computer
Science, vol. 5059, pp. 186–195, 2008.

[20] M. E. Newman, “A measure of betweenness centrality based on
random walks,” Social networks, vol. 27, no. 1, pp. 39–54, 2005.

[21] L. Lü, D. B. Chen, X. L. Ren, Q. M. Zhang, Y. C. Zhang, and
T. Zhou, “Vital nodes identification in complex networks,” Physics
Reports, vol. 650, pp. 1–63, 2016.

[22] J. Leskovec and A. Krevl, “Snap datasets: Stanford large network
dataset collection,” 2015.

Appendix

Proof of Lemma 9. Let a shortest path from u to x be
〈u0, u1, u2, · · · , uk〉 with u0 = u, uk = x and k = dist(x, u).
Since the new snapshot is taken on a stable state, therefore,

consider edges (u0, u1), (u1, u2), · · · , (uk−1, uk), we have

eccnew(u) = eccnew(u0) ≤ eccnew(u1) + 1
≤ eccnew(u2) + 2 ≤ · · ·... ≤ eccnew(uk) + k = eccnew(x) + k.

Therefore, eccnew(u) ≤ min{eccold(u), eccnew(x)+dist(x, u)}.
Similar proof can be applied on showing that

eccnew(u0) ≥ eccnew(u1)− 1 ≥ · · · ≥ eccnew(uk)− k.

By plugging u0 = u, uk = x and k = dist(x, u) in the above
inequality, we complete the proof.
Proof of Lemma 10. Observe that in Step 2) of the iterative-
update, ecc(l) of node l will be updated only if ecc(r) of its
neighbor r is small enough such that ecc(l) > ecc(r)+1. Once
the update takes place, we conceptually associate with ecc(l)
a source ecc(l).s ← r to record the source of the bound. Note
that this source field may be overwritten upon a subsequent
update; however, it will not be removed once created.

eccnew(y).s exists since ecc(y) must have been updated
to let eccnew(y) < eccold(y). Now, we trace from y via the
source link of eccnew(·).s, generating a path 〈u′

0, u′
1, · · · , u′

k′〉
with u′

0 = y, u′
i = eccnew(u′

i−1).s, for each i ∈ [1, k′] while
eccnew(u′

k′) does not have a source. Note that in this sequence
we have eccnew(u′

i−1) = eccnew(u′
i) + 1 for all i ∈ [1, k′], thus

the sequence cannot contain a loop and thus k′ ≤ n. We have

eccnew(y) = eccnew(u′
0) = eccnew(u′

k′) + k′.

We argue that u′
k′ must be the trigger node x. Since if oth-

erwise, eccnew(u′
k′) has no source means that eccnew(u′

k′) =
eccold(u′

k′). Therefore, eccold(y) > eccnew(y) = eccold(u′
k′) +

k′. According to pigeon principle, there must be ∃j ∈ [1, k′]
such that eccoldu′

j−1 > eccoldu′
j+1—violating the assumption

that the old snapshot is stable.
The fact that u′

k′ = x implies three important results:
1) For any node u′

j with j ∈ [0, k′), eccnew(u′
j) <

eccold(u′
j). Since if otherwise, the path would have

stopped at j rather than k′.
2) eccnew(x) = ubx < eccold(x). Since if eccnew(x) =

eccold(x), there will be a violation to the assumption
that the old snapshot is stable. Besides, eccnew(x) has
no source, thus it has not been updated in Step 2) of
the iterative-update. Therefore,

eccnew(x) = min{eccold(x), ubx} = ubx < eccold(x).

3) 〈u′
0, u′

1, · · · , u′
k′〉 is a shortest path from y to x. Since k′

is the length of a path from x to y, thus k′ ≥ dist(x, y).
Based on Lemma 9, that is, eccnew(y) ≤ eccnew(x) +
dist(x, y), it can be assured that k′ = dist(x, y) since
eccnew(y) = eccnew(x) + k′.

From the above three results, we complete the proof.

796

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 16,2020 at 21:19:54 UTC from IEEE Xplore. Restrictions apply.

