
Manipulating Structural Graph Clustering

Wentao Li�, Min Gao§, Dong Wen‡, Hongwei Zhou§, Cai Ke§, and Lu Qin�

�AAII, FEIT, University of Technology Sydney; §Chongqing University; ‡The University of New South Wales
�{wentao.li, lu.qin}@uts.edu.au; §{gaomin, zhouhw, caike}@cqu.edu.cn; ‡dong.wen@unsw.edu.au

Abstract—Structural graph clustering (SCAN) is a popular clus-
tering technique. Using the concept of ε-neighborhood, SCAN defines
the core vertices that uniquely determine the clusters of a graph.
Most existing studies assume that the graph processed by SCAN
contains no controlled edges. Few studies, however, have focused
on manipulating SCAN by injecting edges. Manipulation of SCAN
can be used to assess its robustness and lay the groundwork
for developing robust clustering algorithms. To fill this gap and
considering the importance of the ε-neighborhood for SCAN, we
propose a problem, denoted as MN, for manipulating SCAN. The
MN problem aims to maximize the ε-neighborhood of the target
vertex by inserting some edges. On the theoretical side, we prove
that the MN problem is both NP-hard and APX-hard, and also is
non-submodular and non-monotonic. On the algorithmic side, we
design an algorithm by focusing on how to select vertices to join ε-
neighborhood and thus avoid enumerating edges to report a solution.
As a result, our algorithm bypasses the non-monotonicity nature of
the MN problem. Extensive experiments on real-world graphs show
that our algorithm can effectively solve the proposed MN problem.

Index Terms—Structural graph clustering, Manipulation, Graph,
Algorithm, NP-Hard

I. INTRODUCTION

Graphs (or networks) are widely used to represent schema-

less data [1], such as data from social networks, collaborative

networks, and biological networks [2], [3]. As a fundamental task

in understanding graph structure, graph clustering has received

increasing attention [4]. Graph clustering aims to place the

vertices of a graph into clusters such that vertices in the same

cluster have dense connectivity and vertices in different clusters

have sparse connectivity [4].

Graph clustering has many applications [5]. For example,

it can be used to find groups with similar research interests

in collaborative networks [4], or customers with similar pur-

chasing preferences in e-commerce networks [6]. Due to the

numerous applications, many graph clustering methods have been

proposed [2], [7]–[9]. Among these, structural graph clustering

(SCAN) is a popular method [1], [4], [10]–[18] for identifying

clusters as well as hubs and outliers.

A. Structural Graph Clustering

SCAN relies on the concept of the ε-neighborhood, and em-

ploys two parameters ε and μ [12]. Given a graph G(V,E)
with vertices V and edges E, the neighborhood NG[u] of a

vertex u includes the neighbors v adjacent to u as well as u
itself, i.e., NG[u] = {v|(u, v) ∈ E} ∪ {u}. SCAN defines the

similarity σG(u, v) between two vertices u, v according to the

Cosine similarity of their neighborhoods (see Definition 2). If

σG(u, v) ≥ ε, then vertices u and v are similar to each other,

where ε is the parameter used by SCAN. The ε-neighborhood
N ε

G[u] of u is defined as the vertices in its neighborhood that are

similar to it, i.e., N ε
G[u] = {v|v ∈ NG[u], σG(u, v) ≥ ε}.

Min Gao is the corresponding author.

v1

v2

v3

v4 v5

v6 v7

v8

v9

v10

cluster cluster

hub

outlier

0.89

0.89 0.71

0.45

1

1

1

0.5

0.75

0.75

1

0.87

0.87

0.89

Fig. 1: SCAN under ε = 0.7, μ = 4. v4 is a core, because Nε
G(v4) =

{v1, v2, v3, v4} contains four vertices; v5 is a hub, because its two neighbors
v4 and v8 are in different clusters; v6 is an outlier.

The ε-neighborhood (size) is crucial for SCAN: a vertex is

identified as the core if its ε-neighborhood size is not smaller than

a parameter μ; the core vertices uniquely determine the graph’s

clusters [4]. Meanwhile, a vertex not contained in any cluster is a

hub if vertices in its neighborhood belong to at least two clusters;

otherwise, it is an outlier. In this manner, SCAN assigns roles

to all vertices in the graph. For example, for the graph in Fig. 1,

SCAN identifies two clusters, one hub, and one outlier.

B. Motivations

SCAN is useful in many applications [10], [11], but existing

research assumes that SCAN works with “clean” graphs in which

vertices and edges accurately reflect the information. However,

due to the openness of network platforms [19], [20], controlled

edges [21], [22] can be injected into the graph. For example,

in social networks such as Facebook [23], controlled links (i.e.,

edges) can be created with other accounts [21], [22]. There has

been little research to understand the behavior of SCAN when

edges are allowed to be injected.

To fill the gap, this paper is concerned with whether the results

of SCAN can be manipulated by inserting edges. Identifying

potential manipulations of the algorithm and assessing their

impact [24]–[26] is commonly used in the algorithmic robustness

analysis. When it comes to SCAN, it is necessary to evaluate its

robustness via manipulations due to the widespread use of SCAN.

We attempt to manipulate SCAN from the perspective of

varying ε-neighborhood size, considering the importance of ε-
neighborhood size for SCAN. For example, if an outlier vertex

successfully expands its ε-neighborhood size to at least the

parameter μ, SCAN incorrectly identifies this vertex as a core.

Other aspects of SCAN manipulation will be investigated in future

studies. Specifically, we propose the maximum ε-neighborhood
problem (MN), that is, given a target vertex t of G and a budget

k, we intend to insert (at most) k edges into G so that the ε-
neighborhood size of t increases the most.

Solving the MN problem can be used to evaluate the robustness

of SCAN. Indeed, we can infer SCAN’s robustness by examining

the amount of improvement in the size of the target vertex’s

ε-neighborhood after inserting some edges: if the improvement

amount after insertion is large, we can conclude that SCAN is

vulnerable to manipulation by attacks. Therefore, designing an

effective algorithm to solve the MN problem (and thus obtain the

2750

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00251

improvement amount accurately) is necessary. We hope that our

investigation of the MN problem will raise awareness for further

research on designing more robust clustering algorithms.

C. Contributions

We try to solve the MN problem because of its importance. We

investigate the theoretical difficulty of this problem and devise an

effective method to solve it.

Theoretical Results. The MN problem is challenging because we

may need to check all combinations containing (up to) k edges.

The solution is the edge combination that maximizes the target

vertex t’s ε-neighborhood size after the insertion. Indeed, we

prove that the MN problem is NP-hard (see Theorem 1). This

implies that finding the exact solution in polynomial time is futile.

Approximation algorithms can be used to speed up, but we show

that the MN problem is also APX-hard (see Theorem 2). This

indicates that obtaining solutions with good approximation ratios

is also difficult. The challenge of the MN problem also lies in

the fact that this problem is neither submodular nor monotonic
(see Theorem 3). This means that increasing the budget (i.e., the

number of inserted edges) may decrease t’s ε-neighborhood size.

Algorithmic Results. To tame the challenge of the MN problem,

rather than enumerating combinations of (up to k) edges, we

consider selecting vertices to be added. That is, given a budge k,

we want to add as many vertices as possible to t’s ε-neighborhood

(through inserting edges) to maximize its size. Recall that t’s ε-
neighborhood contains only vertices whose similarity to t is not

less than ε. To make the above idea work, we need to solve two

subproblems. (1) The local promotion problem, i.e., how to raise

the similarity between some vertex v and t (to at least ε) so that

v joins t’s ε-neighborhood. (2) The global selection problem, i.e.,

how to select as many vertices for local promotion as possible,

given a budget k.

We propose a degree-based technique to solve the first sub-

problem (local promotion), which ensures that some vertex v
is added to t’s ε-neighborhood at minimal cost under certain

conditions; we propose a cost-based technique to solve the second

subproblem (global selection), which ensures that a large number

of vertices are added to t’s ε-neighborhood to expand its size for

a given budget. By resolving these two subproblems, we obtain

the algorithm to tackle MN. Our algorithm solves the problem in

the unit of the vertex, ensuring that increasing the budget k can

only increase t’s ε-neighborhood size, thus bypassing the non-

monotonicity nature of the MN problem.

The contributions of this paper are summarized as follows.

• Formalization of the MN problem (Section II). We propose to

manipulate SCAN by varying the ε-neighborhood size. To this

end, we formally define the MN problem. To the best of our

knowledge, the manipulation of SCAN has not been studied in

previous work.

• Hardness analysis of MN (Section III). We show that the MN
problem is challenging by proving that it is NP-hard and APX-

hard. Moreover, we find that this problem is non-submodular

and non-monotonic. These analyses show that designing an

effective algorithm to solve this problem is non-trivial.

• Algorithm design for MN (Section IV). We solve the MN prob-

lem by identifying its two key subproblems: local promotion

and global selection. By solving these subproblems, we obtain

the algorithm to deal with the MN problem. Furthermore,

similarity measures are crucial in many machine learning tasks

such as recommendation systems and link prediction [27].

Therefore, investigating the similarity promotion between two

vertices (i.e., local promotion) may be of independent interest

for these machine learning tasks.

• Extensive experimental studies (Section V). To validate the ef-

fectiveness of the devised algorithm, we conducted experiments

on various real-world graphs. The experimental results show

that for a given budget, our algorithm can effectively expand

the ε-neighborhood size of the target vertex. Furthermore, the

ε-neighborhood size grows as the budget increases.

D. Related Work

Clustering Manipulation. Algorithm manipulation is widely used

in the algorithmic robustness analysis [24]–[26], and it serves

as the foundation for designing robust algorithms [28]–[30]. The

literature [31], [32] provided a survey of algorithm manipula-

tion. Here, we mainly discuss the manipulation of clustering

algorithms. Crussell et al. [33] manipulated the density-based

clustering method DBSCAN [34] by merging two separated

clusters. Chhabra et al. [35] proposed a black-box manipulation

for k-means clustering. Manipulations for single-linkage hierar-

chical clustering [36], spectral clustering [37], and lowest ID

clustering [38] are also available. However, to the best of our

knowledge, there are no studies on manipulating SCAN.

Structural Graph Clustering. Structural graph clustering (SCAN)

was first proposed in [12], which will be described in the

following section. Since then, many studies have been done to

improve the efficiency of SCAN. Shiokawa et al. [1] devised a

new data structure to accelerate SCAN. Chang et al. [4] further

improved the efficiency by using a new two-step paradigm. A

MapReduce-based SCAN algorithm was designed in [13], and a

multi-core based algorithm was devised in [15]. An approximate

algorithm using edge sampling was given in [14].

Another line of studies focuses on the parameters ε and μ
required for SCAN. The methods proposed in [16], [17] automat-

ically find the best ε, making these methods free of the parameter

ε. Wen et al. [18] created the GS∗-Index, which stores clustering

results under any ε and μ. Tseng et al. [10] provided a parallel

construction of the GS∗-Index.

II. PRELIMINARY

We first introduce SCAN in Section II-A, and then formally

define the problem under study in Section II-B.

A. Structural Graph Clustering

We focus on an undirected unweighted graph G(V,E), which

includes n = |V | vertices and m = |E| edges. For each vertex

u ∈ V , we define the neighbors of u, denoted by NG(u), as

the vertices v adjacent to u, i.e., NG(u) = {v ∈ V |(u, v) ∈ E}.
The path pG = (v1, v2, · · · , vl) from v1 to vl is a sequence of

vertices in G, where (vi, vi+1) ∈ E and i ∈ [1, l − 1].

Definition 1 (Neighborhood). The neighborhood of a vertex u ∈
V in G, denoted by NG[u], is defined as NG[u] = NG(u)∪{u} =
{v ∈ V |(u, v) ∈ E} ∪ {u}.
Example 1. Consider the graph G in Fig. 1. The neighbors

of v7 are {v8, v9, v10}. The neighborhood NG[v7] of v7 is

{v7, v8, v9, v10}.
The degree of a vertex u, denoted by dG[u], is the size of

NG[u], i.e., dG[u] = |NG[u]|. For two vertices u and v, we denote

2751

the vertices shared by their neighborhoods as NG[u, v] = {w|w ∈
NG[u]∩NG[v]}, and its size by dG[u, v] = |NG[u, v]|. We denote

the vertices belonging to NG[u] but not to NG[v] as NG[u− v],
i.e., NG[u− v] = {w|w ∈ NG[u] \NG[v]}.
Definition 2 (Similarity). The similarity between two vertices

u and v in G, denoted by σG(u, v), is the Cosine similarity of

their neighborhoods, i.e., the number dG[u, v] of shared vertices,

normalized by the geometric mean
√

dG[u]× dG[v] of their

degrees. That is, σG(u, v) =
dG[u,v]√

dG[u]×dG[v]
.

Example 2. Consider the graph G in Fig. 1. The degree of v7
is dG[v7] = 4, and the degree of v8 is dG[v8] = 4. For v7 and

v8, the vertices shared by their neighborhoods are NG[v7, v8] =
{v7, v8, v9}, and dG[v7, v8] = 3. The similarity between v7 and

v8 is σG(v7, v8) =
3√
4×4

= 0.75. The vertices in NG[v7] but not

in NG[v8] is NG[v7 − v8] = {v10}.
Definition 3 (ε-Neighborhood). Given a parameter ε (0 < ε ≤ 1),

the ε-neighborhood of a vertex u in G, denoted by N ε
G[u], is

defined as the subset of NG[u], where each vertex v satisfies

σG(u, v) ≥ ε. That is, N ε
G[u] = {v ∈ NG[u]|σG(u, v) ≥ ε}.

Definition 4 (Core). Given an integer μ (μ ≥ 2), a vertex u is a

core of G if |N ε
G[u]| ≥ μ.

Definition 5 (Structural Reachability). Given a core vertex u and

another vertex v in G, v is structurally reachable from u if there

exists a path (v1, v2, · · · , vl) (l ≥ 2) such that, i) v1 = u, vl = v;

ii) for all 1 ≤ i ≤ l − 1, vi is core, and vi+1 ∈ N ε
G[vi].

Example 3. Consider the graph G in Fig. 1. With parameters

ε = 0.7, μ = 4, v8 is in N ε
G[v7] since σG(v7, v8) = 0.75 ≥ ε.

The ε-neighborhood N ε
G[v7] of v7 is {v7, v8, v9, v10}, and v7 is

a core. The ε-neighborhood N ε
G[v5] of v5 is {v5, v6}, and v5 is

not a core. v8 is structurally reachable from v7 since there is a

path (v7, v8) between them and v8 ∈ N ε
G[v7].

SCAN Algorithm. We are now ready to describe how SCAN
clusters the graph.

1) Compute the similarity (by Definition 2) of all vertex pairs

(u, v), where (u, v) ∈ E.

2) Compute N ε
G[u] for ∀u ∈ V (by Definition 3) to obtain all

core vertices C = {u||N ε
G[u]| ≥ ε} (by Definition 4).

3) Initialize all core vertices in C as unvisited, and then take out

one unvisited vertex c ∈ C at a time to find a cluster.

a) Assign all vertices structurally reachable (by Definition 5)

from unvisited vertex c ∈ C to the same cluster.

b) Set the vertices in this cluster to be visited.

c) Stop if all vertices in C are marked as visited; otherwise,

continue with step 3-a) to find other clusters.

With the above, SCAN finds all the clusters in the graph. For

the vertices not in any cluster, we classify them into hubs or

outliers, according to their neighborhoods.

Definition 6 (Hub and Outlier). Given a vertex u that does not

belong to any cluster, u is a hub if vertices in its neighborhood

belong to at least two clusters. Otherwise, u is an outlier.

Example 4. Consider the graph G in Fig. 1. (1) We compute

(and label on edges) the similarity of all adjacent vertex pairs. (2)

We obtain the ε-neighborhood of each vertex thus determining the

core vertices C = {v1, v2, v3, v4, v7, v9}. (3) We take an unvisited

core vertex v1 ∈ C and find all vertices {v1, v2, v3, v4} that are

structurally reachable by v1 as the first cluster. Then we take out

another unvisited vertex v7 ∈ C and thus find the second cluster

{v7, v8, v9, v10}. At this time, all vertices in C are marked as

visited, and the clustering ends. For vertices not in any cluster,

we identify v5 as a hub and v6 as an outlier.

B. Problem Formulation

The ε-neighborhood size is critical for SCAN: a vertex is a core

when its ε-neighborhood size is not smaller than the parameter μ;

core vertices uniquely determine clusters in a graph [4]. Due to the

importance of the ε-neighborhood size, we consider manipulating

SCAN by varying the ε-neighborhood size of the target vertex.

Formally, given the graph G(V,E), we try to insert some edges

E ⊆ V 2 \E to obtain a modified graph G′(V ′, E′), where V ′ =
V and E′ = E ∪ E. For a target vertex t ∈ V : in G, t’s ε-
neighborhood is denoted as N ε

G[t]; in G′, t’s ε-neighborhood is

denoted as N ε
G′ [t]. Then, given the number of edges allowed to

be inserted, i.e., the budget k, the maximum ε-neighborhood
(MN) problem is defined as follows.

• Input: graph G, parameter ε, budge k, and target vertex t;
• Output: (at most) k edges E ⊆ V 2 \E to modify G(V,E) to

G′(V,E ∪ E) so that |N ε
G′ [t]| is maximized.

The optimization objective of the MN problem is to maximize

t’s ε-neighborhood size |N ε
G′ [t]| in the modified graph G′. This

objective is equivalent to maximizing the amount of improvement

Δ[t] = |N ε
G′ [t]| − |N ε

G[t]|, i.e., the amount of change in t’s ε-
neighborhood size of t before and after edge insertion. We will
use these two objectives indiscriminately.

Example 5. Consider the graph G in Fig. 1. Given ε = 0.8,

budget k = 1, and target vertex t = v6, one solution to the

MN problem is the edge set E = {(v6, v8)}. Before insertion,

N ε
G[v6] = {v6}; after insertion, N ε

G′ [v6] = {v5, v6}. The

improvement amount (objective value) is Δ[v6] = 1.

Remark. To modify a graph G, we only consider inserting edges

in G because inserting a vertex is equivalent to adding edges

adjacent to that vertex. Also, we have simplified the MN problem

to facilitate discussion. We still have the following options to

investigate for further work. (1) All edges are assumed to be

successfully inserted; however, inserting edges should be possible

with only a certain probability. (2) The insertion cost is assumed

to be the same for all edges; however, different edges may have

different costs. (3) SCAN is only manipulated by changing the

ε-neighborhood size; however, SCAN can be manipulated in other

ways, such as merging two clusters.

III. THEORETICAL RESULTS

In this section, we examine the hardness of the MN problem.

Section III-A shows that the MN problem is NP-hard, and

Section III-B demonstrates that it is APX-hard, non-submodular

and non-monotonic.

A. NP-Hardness

We prove that the MN problem is NP-hard, implying that trying

to solve the problem exactly in polynomial time is futile.

Theorem 1. The MN problem is NP-hard.

Proof. We reduce from the maximum coverage (MC) prob-

lem [39], which is also NP-hard and defined as follows.

2752

• Input: universal set P = {e1, e2, · · · , ep} with p elements el
(1 ≤ l ≤ p); Q = {S1, S2, · · · , Sq} with q sets, where each

set Sj ∈ Q is a non-empty subset of P (1 ≤ j ≤ q); budget k.

• Output: Q containing (at most) k sets from Q that together

cover the most elements in P.

Next, we create an instance of the MN problem in Fig. 2. The

goal is to insert (up to) k edges in G to form G′ so that |N ε
G′ [t]|

of the target vertex t is maximized. Here, ε = 3
dG[t]+k . The graph

G in Fig. 2 consists of five components:

• target vertex t that is connected to vertices in sets A, B, P ;

• path A = {a1, a2, · · · , aw} with w vertices, where w is set to

ensure that t is the maximum degree node in G;

• set P = {e1, e2, · · · , ep}with p vertices, where each el ∈ P
(1 ≤ l ≤ p) corresponds to an element el ∈ P in MC;

• h equivalent vertex sets Qi (1 ≤ i ≤ h), where each set Qi =
{Si1, Si2, · · · , Siq} contains q vertices. Each vertex Sij ∈ Qi

(1 ≤ j ≤ q) corresponds to a set Sj ∈ Q. We connect Sij ∈ Qi

to some vertex el ∈ P if el ∈ Sj in the MC problem. We set

h > � 49 (dG[t]+k)2

dG[t] �;
• set B = {B1, B2, · · · , Bq} of q vertices, where each Bj ∈ B

(1 ≤ j ≤ q) connects to vertex Sij ∈ Qi, for all 1 ≤ i ≤ h.

For example, B1 connects to {S11, S21, · · · , Sh1}.
In G, N ε

G[t] = {t, a1, a2, · · · , aw} since

1) for each a ∈ A, σG(t, a) ≥ 3√
dG[t]×4

≥ ε.

2) each el ∈ P is not in N ε
G[t] (σG(t, el) <

2√
h×dG[t]

< ε) as

a) dG[t, el] = 2 as NG[t] ∩NG[el] = {t, el};
b) dG[el] ≥ h + 1 as el is connected to at least one vertex

Sij in all h groups Qi.

3) each Bj ∈ B is not in N ε
G[t] (σG(t, Bj) =

2√
(h+2)×dG[t]

< ε)

since dG[t, Bj] = 2 and dG[Bj] = h+ 2.

Solution to MC ⇒ solution to MN. Assume that k sets Q are

chosen from Q for MC, which together cover the maximum

elements P of P. Q corresponds to vertices Q1 in group Q1, and P

corresponds to vertices P in P . Then, we connect t to each vertex

of Q1 to form G′. Also, we denote B as the vertices in B that are

connected to vertices in Q1. In G′, N ε
G′ [t] = N ε

G[t]∪P ∪Q1∪B
since

1) for each el ∈ P , dG[t, el] ≥ 3 as at least one vertex in Q1 is

a new neighbor between t and el;
2) for each S1j ∈ Q1, dG[t, S1j] ≥ 3 as at least one vertex in B

is a new neighbor between t and S1j ;

3) for each Bj ∈ B, dG[t, Bj] = 3 as S1j ∈ Q1 is a new

neighbor between t and Bj .

t is still of maximum degree in G′, so σG′(t, er) ≥ ε,
σG′(t, S1j) ≥ ε, and σG′(t, Bj) ≥ ε.
Solution to MN ⇒ solution to MC. First, the solution to the MN
problem must be to connect t to some vertices Sij in groups Qi,

since this makes at least 3 vertices lie in N ε
G′ [t] (1 for Sij , 1

for neighbor Bj ∈ B, and 1 for neighbor in P). The other ways

can increase the size by at most 2 (e.g., inserting edges between

vertices in P or B). Second, when the selected k vertices are

scattered in different groups Qi, we can gather them in Q1 while

improving the same size, since all groups Qi are equivalent. In

Q1, the selected vertices Q1 (resp., sets of Q) are actually the

solution to MC, since they together cover the maximum vertices in

P (resp., elements of P) such that these vertices are in N ε
G′ [t].

· · ·

· · ·· · · · · ·· · ·t

e1 e2 e3 ep

· · ·

ShqSh2Sh1S11 S12 S1q S2qS22S21

· · ·

a1

a2

a3

aw

Q1 Q2 Qh

P
A

BB1 B2 Bq

Fig. 2: Proof of NP-Hardness

t

a1

a2

a3

b1

b2

c1

Fig. 3: Proof of Non-Submodular and Non-Monotonic

B. APX-Hardness and Beyond

The MN problem is also hard to approximate.

Theorem 2. The MN problem cannot be approximated in poly-
nomial time within a ratio of (1 − 1

e + η), for ∀η > 0, unless
P=NP.
Proof. If OPT(MC) is the optimal objective value for MC and

APX(MC) is an approximate, OPT(MC) ≥ APX(MC). If MN
has an optimal objective value OPT(MN) = |N ε

G′ [t]| − |N ε
G[t]|,

this value is |P ∪Q1 ∪B| according to the proof of Theorem 1.

OPT(MN) = OPT(MC) + 2k because |Q1| = |B| = k and

|P | = OPT(MC). Similarly, the approximate value of MM is

APX(MN) = APX(MC) + 2k. If MN has an approximate ratio

γ > 1 − 1
e , i.e., APX(MN) ≥ γOPT(MN), then γOPT(MC) +

2γk = γOPT(MN) ≤ APX(MN) = APX(MC) + 2k. Hence,
APX(MC)
OPT(MC) ≥ γ + 2(γ−1)k

OPT(MC) . This implies MC has an approximate

ratio at least γ, which contradicts [40].

We then show that the MN problem is neither submodular

nor monotonic. In conjunction with Theorem 2, it implies the

difficulty of designing algorithms with good approximate ratios.

This motivates us to investigate a practical method to solve the

problem in the next section.

Theorem 3. Let Δ[t] = |N ε
G′ [t]| − |N ε

G[t]| be t’s improvement
amount, we have Δ[t] is non-submodular and non-monotonic.
Proof. We denote ΔS [t] as the improvement when edges S are

inserted into G, i.e., ΔS [t] = |N ε
G′(V,E∪S)[t]| − |N ε

G(V,E)[t]|.
Non-Submodular. Suppose Δ[t] is submodular, then ΔA[t] +
ΔB [t] ≥ ΔA∪B [t]+ΔA∩B [t] for any edge sets A and B. Consider

the graph G in Fig. 3. Let A = {(t, b1)}, B = {(t, b2)} and

ε = 1√
2

, then, N ε
G[t] = {t, a1, a2, a3} in G.

1) ΔA[t] = 0: after inserting A = {(t, b1)} to form G′, b1 �∈
N ε

G′ [t] as σG′(t, b1) =
2√
5×3

< ε;

2) ΔB [t] = 0: after inserting B = {(t, b2)} to form G′, b2 �∈
N ε

G′ [t];
3) ΔA∪B [t] = 2: after inserting A and B to form G′, both b1

and b2 are in N ε
G′ [t] as σG′(t, b1) = σG′(t, b2) =

3√
6×3

= ε;

4) ΔA∩B [t] = 0 since G′ = G.

As a result, ΔA[t]+ΔB [t] < ΔA∪B [t]+ΔA∩B [t], contradiction.

Non-Monotonic. Suppose Δ[t] is monotonic, then ΔS′ [t] ≥ ΔS [t]
for ∀S ⊆ S′. When edges S = A ∪ B = {(t, b1), (t, b2)} are

inserted to form G′, ΔS [t] = 2; when edges S′ = S ∪ {(b1, c1)}
are inserted to form G′, ΔS′ [t] = 1 as σG′(t, b1) =

3√
6×4

< ε,
contradiction.

2753

IV. ALGORITHMIC RESULTS

Section IV-A identifies two key subproblems of the MN prob-

lem, which are then solved in Sections IV-B and IV-C, respec-

tively. The overall algorithm for MN is given in Section IV-D.

The proofs are moved to the Appendix for clarity.

A. Overview

An intuitive way to solve the MN problem is to enumerate

all combinations of (up to) k edges from V 2 \ E, and compare

the improvement in the target vertex t’s ε-neighborhood size

before and after inserting these edges. The edge combination

that produces the greatest improvement is the solution to MN.

This way, however, necessitates checking a large number of

edge combinations, rendering it intractable. Also, Theorem 3

states that the MN problem is non-monotonic. This is a negative

result because increasing the budget k may lead to a smaller ε-
neighborhood size improvement of t.

Can we design a method to bypass the non-monotonicity nature

of the MN problem? We will give an affirmative answer to this

question. Our main idea is to approach the problem by selecting

vertices rather than enumerating edges. That is, we find the

inserted edges by determining which vertices can be added to

t’s ε-neighborhood. Note that t’s ε-neighborhood contains only

vertices whose similarity to t is not less than ε. The key to

solving the MN problem then lies in determining how to raise

the similarity between a vertex v and t to at least ε, so that v
joins t’s ε-neighborhood (see Subproblem 1) and how to select

as many vertices as possible to promote the similarity when given

a budget k (see Subproblem 2).

Subproblem 1 (Local Promotion). Given a target vertex t and

another vertex v �∈ N ε
G[t], insert the least edges to modify G to

G′, such that σG′(t, v) ≥ ε in G′.

Subproblem 2 (Global Selection). Given a target vertex t and

a budget k, select vertices from V \ N ε
G[t] into N ε

G′ [t] in some

priority order, to maximize |N ε
G′ [t]| in G′.

Subproblem 1 is to use the least edges to increase the simi-

larity between v and t to ε so that v is in t’s ε-neighborhood.

Subproblem 2 is to maximize t’s ε-neighborhood size for a given

budget k, by choosing as many vertices v as possible to increase

the similarity (by calling Subproblem 1). Since we determine the

inserted edges in the unit of the vertex, increasing the budget can

only increase the number of added vertices (i.e., the improvement

of t’s ε-neighborhood size). This bypasses the non-monotonicity

nature of MN. We will solve these two subproblems in the sequel.

B. Local Promotion

This section addresses Subproblem 1, i.e., local similarity

promotion for vertices t and v. We first introduce the strategies

for similarity promotion in Section IV-B-1, then discuss how to

choose the preferred strategy in Section IV-B-2, and finally give

other factors to consider in Sections IV-B-3 and IV-B-4.

B-1. Promotion Strategies

According to the definition of ε-neighborhood (see Defini-

tion 3), two conditions are required for a vertex v to be a member

of the target vertex t’s ε-neighborhood. The first condition is that

the similarity between v and t is not less than ε, and the second

condition is that v belongs to t’s neighborhood NG[t]. We assume

t v

w

NG[t− v]

(a) S1
t v

w

NG[v − t]

(b) S2
t v

w

V \ {NG[t] ∪NG[v]}

(c) S3
Fig. 4: Insertion Strategies

that v ∈ NG[t], and the extension on v �∈ NG[t] will be given in

Section IV-B-4.

Then, the only condition to let (neighbor) v join t’s ε-
neighborhood is to raise the similarity σG(t, v) between them

to at least ε. By the definition, σG(t, v) = dG[t,v]√
dG[t]×dG[v]

. Since

inserting edges in G does not decrease the degree of any vertex

(the denominator does not decrease), the only way to raise the

similarity is to increase the number dG[t, v] (numerator): let t and

v share more neighbors. Based on this consideration, all (possible)

edge insertion strategies are as follows.

• S1. connect v to w ∈ NG[t− v] = NG[t] \NG[v] (Fig. 4(a));

• S2. connect t to w ∈ NG[v − t] = NG[v] \NG[t] (Fig. 4(b));

• S3. connect t, v to w ∈ V \ {NG[v] ∪NG[t]} (Fig. 4(c)).

Example 6. Consider the graph G in Fig. 1. We describe three

strategies to improve the similarity between the target vertex t =
v5 and v = v8. (1) S1: we connect v = v8 with v6 ∈ NG[t−v] =
{v4, v6}. (2) S2: we connect t = v5 with v7 ∈ NG[v − t] =
{v7, v9}. (3) S3: we connect both t = v5 and v = v8 to v3 ∈
V \ {NG[v] ∪NG[t]} = {v1, v2, v3, v10}.

B-2. Degree-Based Strategy Determination

We present three strategies (S1, S2, and S3) to show how to

insert edges for similarity promotion, and the next question is

how to choose the preferred strategy. The preferred strategy for

vertices t and v is to use a small number of edges so that their

similarity reaches ε.

Note that the similarity between t and v improves monoton-

ically with the number of inserted edges (see Lemmas 1-2). To

determine the preferred strategy, we can pre-inject l edges to see

how much the similarity has improved for each possible strategy.

The preferred strategy is the one that yields a large similarity

value after injection. Based on the above idea, this section

presents the degree-based strategy determination technique to

identify the preferred strategy.

Validity of S1 and S2. We first show that by inserting edges

between v and NG[t−v] (via S1) in G to form G′, the similarity

between t and v will increase in G′. This implies that S1 is valid

for similarity promotion.

Lemma 1. If l edges E ⊆ {(v, w)|w ∈ NG[t− v]} are inserted
in G to form G′(V,E ∪E) (by S1), σG′(t, v) > σG(t, v), where
l ≤ |NG[t− v]|.

By iteratively using Lemma 1, we can prove that the similarity

value increases monotonically as the number of inserted edges

increases. With similar logic, we show that if edges are inserted

between the target vertex t and NG[v − t] (by S2) in G to form

G′, the similarity between t and v will be increased in G′. This

implies that S2 is also valid.

Lemma 2. If l edges E ⊆ {(t, w)|w ∈ NG[v − t]} are inserted
in G to form G′(V,E ∪E) (by S2), σG′(t, v) > σG(t, v), where
l ≤ |NG[v − t]|.

2754

Example 7. Consider the graph G in Fig. 1. We want to increase

the similarity between t = v5 and v = v8. In G, σG(v5, v8) =
2√
4×4

= 0.5. By S1, we connect v8 with v6 ∈ NG[v5−v8] to form

G′, and σG′(v5, v8) = 3√
4×5

= 0.67 > σG(v5, v8). By S2, we

connect v5 with v7 ∈ NG[v8−v5] to form G′, and σG′(v5, v8) =
0.67 > σG(v5, v8).

Hybrid Strategy Using S1 and S2. We use S1 to insert edges

between v and NG[t − v], or S2 to insert edges between t
and NG[v − t]. We can also use a hybrid of S1 and S2, i.e.,

simultaneously select some vertices in NG[t − v] to connect to

v and some vertices in NG[v − t] to connect to t. However, the

maximum similarity value is obtained when this hybrid strategy
degenerates to S1 or S2.

Lemma 3. If l edges E ⊆ {(v, w)|w ∈ NG[t−v]} ∪{(t, w)|w ∈
NG[v − t]} are inserted in G to form G′(V,E ∪ E), σG′(t, v)
maximizes when either E ⊆ {(v, w)|w ∈ NG[t − v]} (by S1) or
E ⊆ {(t, w)|w ∈ NG[v − t]} (by S2), where l ≤ min{|NG[t −
v]|, |NG[v − t]|}.
Example 8. Consider the graph G in Fig. 1, where t = v5 and

v = v8. When we use the hybrid strategy to insert two edges

(v8, v6) (by S1) and (v5, v7) (by S2), we obtain σG′(v5, v8) =
4√
5×5

= 0.8. When we use S1 to insert two edges between v8
and NG[v5 − v8] or we use S2 to insert two edges between v5
and NG[v8−v5], we get σG′(v5, v8) =

4√
4×6

= 0.82. This shows

that the maximum similarity value of the hybrid strategy arises

when S1 or S2 is used alone.

Priority of S1 and S2. Lemma 3 shows that the best performance

of the hybrid strategy occurs when S1 or S2 is used alone.

However, there is still a question: we cannot decide when it is

suitable to use S1 and when to use S2. Lemma 4 provides the

answer.

Lemma 4. Suppose σs1
G′(t, v) is obtained by choosing l edges

from {(v, w)|w ∈ NG[t − v]} (by S1) and σs2
G′(t, v) is obtained

by choosing l edges from {(t, w)|w ∈ NG[v− t]} (by S2), where
l ≤ min{|NG[t− v]|, |NG[v − t]|}, then{

σs1
G′(t, v) > σs2

G′(t, v), if dG[t] < dG[v];
σs1
G′(t, v) < σs2

G′(t, v), if dG[t] > dG[v].

From Lemma 4, it follows that S1 is preferable when dG[v] >
dG[t] while S2 is preferable when dG[v] < dG[t]. If dG[t] =
dG[v], we use S1 because using S2 has a side effect that will be

discussed in Section IV-B-3.

Example 9. Consider the graph G in Fig. 1. Suppose we want

to increase the similarity between t = v5 and v = v4. Note

that dG[v5] = 4 < dG[v4] = 5. When we apply S1 to insert

an edge between v4 and NG[v5 − v4], we obtain σS1
G′ (v4, v5) =

3√
6×4

= 0.62. When we apply S2 to insert an edge between v5
and NG[v4 − v5], we obtain σS2

G′ (v4, v5) = 3√
5×5

= 0.6. Thus,

S1 outperforms S2 when dG[v5] < dG[v4].

Priority of S3. Strategy S3 connects both t and v to the vertex

w ∈ V \{N [v]∪N [t]}. In this case, we need to insert 2 edges to

create a common neighbor for t and v. We show that S3 is not

as effective as S1 or S2.

Lemma 5. Suppose σs3
G′(t, v) is obtained by inserting l edges

from {(t, w), (v, w)|w ∈ V \ {N [v]∪N [t]}} (by S3), σs1
G′(t, v) is

obtained by inserting l edges from {(v, w)|w ∈ NG[t − v]} (by

dG[t] S1 > S2S2 > S1

S3 < S2 S3 < S1

dG[v]

Fig. 5: Degree-Based Strategy Determination

S1), σs2
G′(t, v) is obtained by inserting l edges from {(t, w)|w ∈

NG[v − t]} (by S2), where l ≤ min{|NG[t − v]|, |NG[v − t]|},
then, σs3

G′(t, v) < min{σs1
G′(t, v), σs2

G′(t, v)}.
Example 10. Consider the graph G in Fig. 1, where t = v5
and v = v8. When we use S3 to insert two edges (v5, v3) and

(v8, v3), we obtain σS3
G′ (v5, v8) = 3√

5×5
= 0.6. When we use

S1 to insert two edges between v8 and NG[v5 − v8] or we use

S2 to insert two edges between v5 and NG[v8 − v5], we obtain

σG′(v5, v8) =
4√
4×6

= 0.82. This shows that S3 is less effective

than S1 or S2.

Remark. S3 can be combined with either S1 or S2 to create a

hybrid strategy. However, because S1 and S2 outperform S3 in

terms of similarity promotion, the best performance of a hybrid

strategy occurs when S3 is not used. As a result, hybrid strategies

that include S3 are not considered.

Degree-Based Technique. We propose the degree-based technique

for strategy determination (Fig. 5). Assume that the degree of the

target vertex t is dG[t] in G, and vertices in G are divided into

two groups, one greater than dG[t] and one less than dG[t].

• According to Lemma 4, S1 outperforms S2 for vertices with

degree greater than dG[t], while S2 outperforms S1 for vertices

with degree less than dG[t];
• According to Lemma 3, the hybrid strategy performs best when

it degenerates to S1 or S2.

• According to Lemma 5, S3 is no better than S1 and S2.

Thus, to choose the preferred strategy for raising the similarity

between vertices t and v, we avoid using S3, and use only S1
and S2. Specifically,

• If dG[t] ≤ dG[v], we use S1;

• If dG[t] > dG[v], we use S2;

In this way, when all strategies are applicable, the degree-based

technique guarantees that the chosen strategy is optimal, i.e., the

similarity between t and v can be increased to ε by inserting the

minimum number of edges.

B-3. Side Effect of S2 and S3

We plan to increase the similarity between the target vertex

t and another vertex v ∈ V . However, using strategies S2 and

S3 will simultaneously increase the degree of t: using S2, t will

connect to vertices T ⊆ NG[v − t]; using S3, t will connect to

vertices T ⊆ V \ {NG[v] ∪NG[t]}. This will have a side effect
on other vertices in NG[t], as their similarity with t may decrease

due to the increase in the degree of t.

Lemma 6. When t connects to vertices in T by S2 or S3, then
σG′(t, u) < σG(t, u), for vertices {u ∈ NG[t]|NG[u] ∩ T = ∅}.

The seriousness of the side effect is that it may cause the

similarity between t and vertices u in N ε
G[t] to drop below ε,

thus putting u outside N ε
G[t]. In other words, the side effect can

make the size of t’s ε-neighborhood size decrease after inserting

edges, violating our requirement for monotonicity.

Example 11. Consider the graph G in Fig. 1, where ε = 0.7.

Suppose we want to boost the similarity between t = v5 and

2755

v = v8, we use S2 to connect v5 to v7 ∈ NG[v8 − v5]. For v6 ∈
N ε

G[v5], as the degree of v5 increase by 1 in G′, σG′(v5, v6) =
0.63 < σG(v5, v6) = 0.71. This has a side effect on v6 since its

similarity with v5 decreases to below ε.

Side Effect Handling. To handle the side effect on u ∈ N ε
G[t], we

need to let u rejoin N ε
G[t]. Thus, we need to repair the similarity

between t and u. But an ensuing problem is that in order to repair

their similarity, we may further increase the degree of t, causing

this side effect cascades. Fortunately, we show that the degree of

t can be kept constant during the similarity repair process, which

can be done by connecting u to vertices in T .

Lemma 7. Suppose l = |T | = dG′ [t]− dG[t] edges are inserted
between t and vertices in T , for ∀u ∈ N ε

G[t], σG′(t, u) ≥ ε when
inserting ≤ l edges between u and T .

Example 12. Following the previous example, the similarity

between v = v6 and t = v5 drops below ε = 0.7, so v6 leaves

v5’s ε-neighborhood. To eliminate the side effect, we connect v6
to T = {v7}. After this operation, σG′(v5, v6) =

3√
5×3

= 0.77,

thereby rejoining v6 to N ε
G′ [v5]. During this process, the degree

of t = v5 remains constant.

Algorithm. Suppose the degree of t increases because of connect-

ing to vertices in T . If the similarity between t and u ∈ N ε
G[t]

is below ε, we connect u to a subset T ′ of T to eliminate the

side effect. Lemma 7 guarantees that this treatment definitely

restores their similarity to at least ε (if T = T ′). Specifically,

in Algorithm 1, we first set the result set E as an empty set

(Line 1). Then, the modified graph G′ is obtained by connecting

t to vertices in T (Line 2). Next, for each u ∈ N ε
G[t], if the

similarity between t and u is lower than ε, we progressively1 add

vertices from T to T ′ until the similarity recovers to at least ε
(Line 4-5). We connect u to T ′ and insert the corresponding edges

to E (Line 6).

Algorithm 1: Side Effect Handling

Input: graph G(V,E), target t, vertices T
Output: edges E

1 E ← ∅;
2 G′ ← G(V,E ∪ {(t, w)|w ∈ T});
3 for each vertex u ∈ Nε

G[t] do
4 if σG′ (t, u) < ε then
5 add vertices from T to T ′ until σG′ (t, u) ≥ ε;
6 E ← E ∪ {(u,w)|w ∈ T ′};

7 return E;

Theorem 4. The time cost2 of Algorithm 1 is O(|T | · |N ε
G[t]| ·

dmax), where dmax is the maximum degree of vertices in G.

B-4. Extension to Non-Neighborhood
To let v join the target vertex t’s ε-neighborhood, the condition

v ∈ NG[t] is necessary because N ε
G[t] ⊆ NG[t]. When v �∈ NG[t],

we need to do a preprocessing by connecting t and v to make

v become t’s neighbor. However, this procedure increases the

degree of t by 1 (t connects to T = {v}), which leads to the side

effect, as introduced in Lemma 6. Hence, we also need to use

Algorithm 1 to handle this side effect.
Algorithm. Algorithm 2 gives the preprocessing for v �∈ NG[t].
We first call Algorithm 1 to fix the side effect caused by

1We add vertices in T in the order of their non-increasing vertex IDs.
2The factor |T | can be removed by applying Equations 1-2 in Section IV-C.

connecting t to v (Line 1). Then, the edge (t, v) is added to

E (Line 2).

Algorithm 2: Preprocessing

Input: graph G(V,E), target t, v �∈ NG[t]
Output: edges E

1 E ← Algorithm 1 by setting T = {v};

2 E ← E ∪ {(t, v)};

3 return E;

Theorem 5. The time cost of Algorithm 2 is O(|N ε
G[t]| · dmax),

where dmax is the maximum degree of vertices in G.

Example 13. Consider the graph G in Fig. 1. Suppose we want

to improve the similarity between t = v5 and v = v1, we first

connect v5 to v1 as preprocessing. However, the increase in the

degree of v5 causes the similarity between v5 and v6 ∈ N ε
G[v5]

to drop to σG′(v5, v6) = 2√
5×2

= 0.63. We apply the side

effect handling technique to connect v6 to T = {v1}. After that,

σG′(v5, v6) =
3√
5×3

= 0.77, so v6 rejoins N ε
G′ [v5].

C. Global Selection

The concept of promotion cost is the basis for solving Sub-

problem 2 (global selection). For a target vertex t and some fixed
vertex v, we determine the preferred strategy applicable to v by

solving Subproblem 1. Using the determined strategy, we define

the number of edges required to raise the similarity between v
and t to at least ε as the promotion cost of v. In other words,

when using the preferred strategy, the similarity between v and

t can be made to at least ε after inserting edges whose required

number equals the promotion cost.

The key to resolving Subproblem 2 is to choose one vertex

at a time with the lowest promotion cost (i.e., the number of

required edges to be inserted), until the budget is used up. In this

way, given a budget k, we are likely to make a large number of

vertices join t’s ε-neighborhood.

The next question is how to compute the promotion cost of

each v ∈ V . Recall that strategies S1 and S2 are candidates for

the preferred strategy (since other strategies are less effective and

require more edges). We thus present the costs of using S1 and

S2 to promote v in Lemma 8 and Lemma 9, respectively.

Lemma 8. Given a vertex v �∈ N ε
G[t], it requires cs1(v) edges to

be inserted to make σG′(t, v) ≥ ε by S1, where b = ε2dG[t] −
2dG[t, v], c = 4ε2dG[t](dG[v]− dG[t, v]) + ε4dG[t]

2, and

cs1(v) =

⎧⎪⎨
⎪⎩
� b−

√
c

2 �, if b+
√
c

2 ≥ b−√c
2 > 0;

� b+
√
c

2 �, if b+
√
c

2 ≥ 0 ≥ b−√c
2 ;

−1, otherwise.
(1)

Lemma 9. Given a vertex v �∈ N ε
G[t], it requires cs2(v) edges to

be inserted to make σG′(t, v) ≥ ε by S2, where b = ε2dG[v] −
2dG[t, v], c = 4ε2dG[v](dG[t]− dG[t, v]) + ε4dG[v]

2, and

cs2(v) =

⎧⎪⎨
⎪⎩
� b−

√
c

2 �, if b+
√
c

2 ≥ b−√c
2 > 0;

� b+
√
c

2 �, if b+
√
c

2 ≥ 0 ≥ b−√c
2 ;

−1, otherwise.
(2)

Example 14. Consider the graph G in Fig. 1. Suppose we want

to use S1 to improve the similarity between t = v5 and v = v8
to at least ε = 0.7. Since b = ε2dG[t] − 2dG[t, v] = −2.04; c =

2756

Algorithm 3: MNS

Input: graph G(V,E), parameter ε, budget k, target t
Output: edges E

1 while k > 0 do
2 Q ← an empty min-priority queue;
3 for each vertex v ∈ V do
4 if v ∈ Nε

G[t] then continue;

5 E(v) ← ∅, T ← ∅;

6 if v �∈ NG[t] then E(v) ← Algorithm 2;
// Strategy S1

7 if dG[t] ≤ dG[v] then
8 compute cs1(v) by Equation 1;
9 if cs1(v) < 0 or cs1(v) > |N [t− v] \ t| then continue;

10 T ← select cs1(v) vertices from N [t− v] \ t;
11 E(v) ← E(v) ∪ {(v, u)|u ∈ T};

12 if|E(v)| ≤ k then insert v → Q with key |E(v)|;
13 else

// Strategy S2
14 compute cs2(v) by Equation 2;
15 if cs2(v) < 0 or cs2(v) > |N [v − t] \ v| then continue;
16 T ← select cs2(v) vertices from N [v − t] \ v;

17 E(v) ← E(v) ∪ {(t, u)|u ∈ T};

18 ET ← Algorithm 1, E(v) ← E(v) ∪ ET ;

19 if|E(v)| ≤ k then insert v → Q with key |E(v)|;
20 if Q = ∅ then break;

21 v ← pop from Q, E ← E ∪ E(v), k ← k − |E(v)|;
22 insert E(v) into G;

23 return E;

4ε2dG[t](dG[v] − dG[t, v]) + ε4dG[t]
2 = 19.52, we get

b−√c
2 =

−3.23 and
b+
√
c

2 = 1.19, which gives a cost of 2 = �1.19�. After

inserting 2 edges in the graph by S1, σG′(v5, v8) = 4√
4×6

=
0.82 ≥ ε, i.e., the similarity requirement is satisfied.

D. Overall Algorithm

We now present the algorithm, denoted as MNS, for solving

the MN problem. MNS operates in rounds and chooses the lowest

cost vertex in each round. To obtain the lowest cost vertex, MNS
(1) first applies a degree-based technique to identify the preferred

strategy for each vertex v (by solving Subproblem 1); (2) then

uses Equation 1 or Equation 2 to calculate the promotion cost for

each v based on the identified strategy (by solving Subproblem 2).

This process continues until the budget is exhausted.

MNS is described in Algorithm 3. We iteratively select a vertex

in reach round, until the remaining budget k is less than zero

(Line 1), or there are no candidates to choose from (Line 20).

In each round, for each v ∈ V (Line 3), we skip v if v is

already in t’s ε-neighborhood (Line 4). Next, if v �∈ NG[t], we use

Algorithm 2 as preprocessing to connect t to v, and then we place

the returned edges of Algorithm 2 to E(v) (Line 6). Following

that, we divide into two cases depending on the degree of v.

dG[t] ≤ dG[v]. We use S1 (Line 7-12). We first compute cs1(v)

using Equation 1 (Line 8), and skip if cs1(v) is negative or the

size of N [t − v] \ t is smaller than cs1(v) (Line 9). Otherwise,

we select cs1(v) vertices T from N [t − v] \ t (Line 10), and

merge edges {(v, u)|u ∈ T} into E(v) (Line 11). v is added into

queue Q only if the number |E(v)| does not exceed the remaining

budget k (Line 12).

dG[t] > dG[v]. We use S2 (Line 13-19). The processing logic

is similar to the above case, with the main difference being in

Line 18. Due to the side effect of using S2, we need to call

Algorithm 1 to find edges ET to eliminate the side effect. We

merge ET into E(v) as the required edges to promote v.

In both cases, we pop the lowest cost vertex v from Q as the

selected vertex for this round, and subtract the cost |E(v)| of v
from the budget k (Line 21). Note that we need to insert E(v)
into graph G when proceeding to the next round (Line 22). We

omit how to maintain the vertex degree when the graph changes,

since this operation can be easily embedded in the algorithm.

Theorem 6. The time cost of Algorithm 3 is O(k · |V | · |N ε
G[t]| ·

dmax), where dmax is the maximum degree of vertices in G.

Remark. In Algorithm 3, when dG[t] > dG[v], using strategy

S2 for vertex v brings the side effect. In this case, it is possible

that using strategy S1 or a hybrid strategy involving both S1 and

S2 for vertex v will bring less cost. However, trying all possible

hybrid strategies (including using S1 or S2 alone) for each such

vertex v to find the strategy with the lowest cost would be very

time-consuming. In order to weigh effectiveness and efficiency,

Algorithm 3 only considers the cost when v employs strategy S2
and disregards the other strategies. We will further improve the

effectiveness and efficiency of Algorithm 3 as future work.

V. EXPERIMENTS

A. Settings

Datasets. We conducted experiments on six real-world graphs

to validate the effectiveness of our proposed algorithm MNS in

solving the MN problem. These graphs were downloaded from

Stanford Large Network Dataset Collection [41]. Table I gives

the details of the graphs, including the node number (n), edge

number (m) of each graph.

TABLE I: Description of Datasets

Abbr. Dataset n m
LAST lastfm 7,624 27,806
DEEZ deezer-Eu 28,281 92,752
WIKI wiki-vote 7,115 100,762
TWIT twitch 9,498 153,138
FACE facebook 22,470 170,823
GITH github 37,700 289,003

Algorithms. As the MN problem has not been studied before, we

cannot find a comparison method. To test the proposed algorithm

MNS, we designed the following four baselines for comparison.

• DEG. DEG is similar to MNS in that it also selects one vertex

per round to join the ε-neighborhood of the target vertex

t. Specifically, DEG uses the same degree-based technique

as MNS to determine the preferred strategy for each vertex

(solving Subproblem 1). In this way, we know how to insert

edges to improve the similarity between each vertex and t
to at least ε. However, when solving Subproblem 2, DEG
determines the selected vertices for each round directly based

on the degree, without taking the promotion cost into account.

In other words, DEG prefers vertices with a large degree for

similarity promotion.

• SIM. SIM is similar to MNS in solving Subproblem 1, but

when solving Subproblem 2, SIM prefers vertices that have a

large similarity to the target vertex. SIM first calculates the

similarity of all vertices to the target vertex, and then chooses

the vertex with high similarity to the target vertex for similarity

promotion in preference.

• kDEG. Rather than selecting vertices in rounds as MNS to

determine the inserted edges, kDEG inserts edges between the

target vertex and the k (i.e., budget) vertices with the highest

degree in the graph.

2757

 0

 5

 10

 15

 20

LAST DEEZ WIKI TWIT FACE GITH

Δ

 MNS
 DEG

 SIM
 kDEG

 kSIM

Fig. 6: The Comparison of Different Methods on the Improvement Amount

• kSIM. Like kDEG, kSIM inserts edges between the target vertex

and the k (i.e., budget) vertices in the graph that are most

similar to the target vertex.

All algorithms were implemented in C++ and compiled with

GNU GCC 4.8.5 with -O3 level optimization. All experiments

were conducted on a machine with Intel Xeon 2.5 GHz CPU and

768 GB memory running Linux (Red Hat Linux 4.8.5, 64 bit).

Parameters. The concept ε-neighborhood contains a parameter ε,
which is a similarity threshold taking values between 0 and 1. We

set the value of ε to 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. As suggested

by recent work on SCAN [4], the default value of ε is taken as

0.6. Besides, our algorithm has a parameter, budget k, which is

the number of edges allowed to be inserted. We set the value of

k to 20, 40, 60, 80, and 100, where 60 is the default value.

Metric. To measure the effectiveness of an algorithm, we use

the amount of change in the target vertex’s ε-neighborhood size

as an evaluation metric. Specifically, for a target vertex t, we

compute the size N ε
G[t] on graph G and the size N ε

G′ [t] on the

graph G′ after inserting edges. We define the improvement of

t’s ε-neighborhood size as Δ[t] = N ε
G′ [t] − N ε

G[t]. A higher

value of Δ[t] implies that the method is more effective for the

MN problem. To fairly compare the effectiveness of different

algorithms, we randomly select 30 vertices whose initial ε-
neighborhood size is 1 from the graph as target vertices. We

record the improvement amount of each target and report the

average improvement of these 30 vertices. If not specified, we

use the average improvement as the evaluation criterion.

B. Results

Ex-1: Comparison of Different Methods. To compare our method

MNS with the baselines (DEG, SIM, kDEG and, kSIM), we set

the parameters to their default values (i.e., ε = 0.6, k = 60). The

improvement amount of all methods is calculated, and the results

are shown in Fig. 6. We have the following findings.

• Comparison with DEG and SIM. On all used graphs, our

method MNS outperforms DEG and SIM. The improvement

of MNS is on average 1.44 times that of DEG and 1.21 times

that of SIM. The difference between our method and DEG and

SIM is how to solve Subproblem 2, i.e., how to select vertices

for similarity promotion. Our method outperforms others by

selecting vertices with the lowest promotion cost in each round.

• Comparison with kDEG and kSIM. The performance of kDEG
and kSIM is poor: (1) the improvement amount of kDEG is 0

on all used graphs; (2) While kSIM has some improvement,

the improvement amount of our method MNS is 66.62 times

that of kSIM. kDEG and kSIM both solve the MN problem by

inserting edges directly instead of selecting vertices. This shows

that simply inserting edges does not solve the MN problem

effectively, which verifies the necessity of our method.

Ex-2: Effect of Budget k. We set the default value of the budget k
to 60. To test the effect of the budget on the improvement amount,

 MNS DEG SIM

 4
 6
 8

 10
 12
 14
 16
 18
 20

20 40 60 80 100

Δ

(a) LAST

 4

 6

 8

 10

 12

 14

 16

20 40 60 80 100

Δ

(b) DEEZ

 2
 4
 6
 8

 10
 12
 14

20 40 60 80 100

Δ

(c) WIKI

 2

 4

 6

 8

 10

 12

 14

20 40 60 80 100

Δ

(d) TWIT

 4
 6
 8

 10
 12
 14
 16
 18
 20

20 40 60 80 100

Δ

(e) FACE

 2
 4
 6
 8

 10
 12
 14
 16
 18

20 40 60 80 100

Δ

(f) GITH
Fig. 7: The Effect of Budget k on the Improvement Amount

we vary the budget values from 20, 40, 60, 80, to 100. For each

budget value, we set ε to the default value of 0.6. Since kDEG
and kSIM do not perform well, we will not report their results in

the following experiments. We report in Fig. 7 the results of three

methods (MNS, DEG, and SIM) and have the following findings.

• The improvement amount for all methods grows as k increases.
We find that the improvement amount of all methods increases

with the increase of k on all graphs. This is reasonable because

all methods pay a certain promotion cost per round to select

some vertex, and thus the number of vertices selected (i.e.,

the improvement amount) is constrained by the budget. As the

budget increases, more vertices can be selected to join the ε-
neighborhood of the target vertex. This also demonstrates that

we indeed bypass the MN’s non-monotonicity nature.

• MNS performs the best at all budgets. MNS outperforms all

other methods on all graphs and at all budget values. This

shows that MNS maintains a good performance under different

budgets. Also, the benefit of our method grows when k is

increased. For example, on DEEZ, when k is varied from 20,

40, 60, 80, to 100, the improvement of MNS is 1.1, 1.16, 1.24,

1.27, and 1.32 times that of SIM, respectively.

Ex-3: Effect of Parameter ε. We set the default value of the

parameter ε to 0.6. To check the effect of ε, we vary the ε values

from 0.3, 0.4, 0.5, 0.6, 0.7, to 0.8. For each value of ε, we set

the budget k to the default value of 60. The results are reported

in Fig. 8 and yield the following findings.

• The improvement amount for all methods decreases as ε in-
creases. On all graphs, the improvement amount for all methods

drops as the value of ε increases. Note that as the value of ε
increases, more edges are needed (i.e., at a higher promotion

cost) to improve the similarity. The number of vertices that can

join the ε-neighborhood then drops for a given budget.

• MNS performs the best for all ε values. Although the improve-

ment of MNS decreases as ε rises, MNS still outperforms all

other methods. This means that our method MNS is always a

good choice when ε varies.

Ex-4: Effect of Side Effect Handling. When using strategy S2 and

preprocessing (Algorithm 2), an increase in the target vertex t’s

2758

 MNS DEG SIM

 0
 5

 10
 15
 20
 25
 30
 35

0.3 0.4 0.5 0.6 0.7 0.8

Δ

(a) LAST

 0

 5

 10

 15

 20

 25

 30

0.3 0.4 0.5 0.6 0.7 0.8

Δ

(b) DEEZ

 0

 5

 10

 15

 20

 25

 30

0.3 0.4 0.5 0.6 0.7 0.8

Δ

(c) WIKI

 0

 5

 10

 15

 20

 25

 30

0.3 0.4 0.5 0.6 0.7 0.8

Δ

(d) TWIT

 0

 5

 10

 15

 20

 25

 30

0.3 0.4 0.5 0.6 0.7 0.8

Δ

(e) FACE

 0

 5

 10

 15

 20

 25

 30

0.3 0.4 0.5 0.6 0.7 0.8

Δ

(f) GITH
Fig. 8: The Effect of Parameter ε on the Improvement Amount

 0

 2

 4

 6

 8

 10

 12

 14

LAST DEEZ WIKI TWIT FACE GITH

Δ

 MNS MNS-

Fig. 9: The Effect of Side Effect Handling

degree can introduce the side effect for MNS. Algorithm 1 is

proposed to address the side effect. To verify the necessity and

effectiveness of the side effect handling technique, we remove

Algorithm 1 from MNS to obtain the method MNS−. We set k
to 60 and ε to 0.6 to test the performance of MNS and MNS−. The

results are shown in Fig. 9, and we have the following finding.

• The side effect handling technique is critical. The improvement

amount of MNS is on average 9.48 times greater than that of

MNS−. This result shows that side effect handling is necessary.

Thanks to our handling technique, we can guarantee that

when adding new vertices, other vertices already in t’s ε-
neighborhood will not leave.

Ex-5: Effect of Initial Size. In the previous experiments, the ini-

tial ε-neighborhood size of the target vertices was 1. To explore

the effect of the initial ε-neighborhood size of target vertices, we

obtain the initial sizes of all vertices in a graph and group the

vertices based on their initial sizes. Then, we choose 30 vertices

from each vertex group (with a specific initial size) as target

vertices, and set the values of ε and budget k to their default

values. Due to space constraints, we only show the results for

the first two graphs (LAST and DEEZ) in Figure 10, where the

maximum initial size of vertices in LAST is 15, and the maximum

initial size of vertices in DEEZ is 12.

• MNS performs the best with varying initial sizes. Fig. 10 shows

that, for target vertices selected from vertex groups of different

initial ε-neighborhood sizes, our method MNS outperforms

other methods in terms of the improvement amount. For

example, on LAST, if the initial size of the target vertices is

14, the improvement amount of MNS is 1.2 times that of DEG;

if the initial size of the target vertices is 15, the improvement

 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Δ

MNS DEG SIM

(a) LAST

 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

1 2 3 4 5 6 7 8 9 10 11 12

Δ

MNS DEG SIM

(b) DEEZ
Fig. 10: The Effect of the Initial ε-Neighborhood Size

 4
 5
 6
 7
 8
 9

 10
 11
 12

LAST DEEZ WIKI TWIT FACE GITH

Δ~

 MNS DEG SIM

Fig. 11: The Test of the Relative Improvement Amount

amount of MNS is 1.6 times that of DEG. This shows that the

superiority of our method is not affected by the initial size.

Ex-6: Test of Relative Improvement Amount. To further investi-

gate the effect of target vertex selection, 30 vertices are chosen

at random as target vertices. Furthermore, a new metric, relative

improvement amount, is proposed to assess the performance of

various methods. The relative improvement amount Δ̃[t] of a

target vertex t is defined as the ratio of the improvement amount

Δ[t] to the initial ε-neighborhood size of t, i.e., Δ̃[t] = Δ[t]
|Nε

G[t]| .
The parameters ε and budget k are set to their default values, and

the average relative improvement amount of these target vertices

is shown in Fig. 11. We have the following finding.

• The relative improvement amount of MNS is the best. On the

six graphs used, the relative improvement amount of MNS is

on average 1.47 times that of DEG and 1.21 times that of SIM.

This indicates that MNS outperforms the other methods when

target vertices are chosen randomly. On the other hand, the

above results (using the relative improvement amount as the

criterion) are similar to those in Ex-1 (using the improvement

amount as the criterion), indicating that MNS performs well

under both evaluation criteria.

Ex-7: Test of Scalability. In testing scalability, we divide the

vertices of a graph into five disjoint groups, each group containing

20% of the graphs’ vertices. We generate five test subgraphs for

this graph, where the i-th subgraph contains the vertices (and

the edges between them) from the first i groups. For each test

subgraph, we set the parameter ε and budget k to default values

and randomly select 30 vertices as target vertices. We count the

improvement amount and the running time on each test subgraph.

Due to space constraints, we only report the results on LAST in

Fig. 12, and obtain the following findings.

• Effectiveness. Since the target vertices are chosen randomly,

the improvement amount of various methods does not always

increase with the vertex number. However, MNS outperforms

the other methods on different test subgraphs. For example, on

the subgraph with 60% vertices, the improvement amount of

MNS is 1.34 times that of DEG and 1.22 times that of SIM.

On the subgraph with 80% vertices, the improvement amount

of MNS is 1.41 times that of DEG and 1.26 times that of SIM.

• Efficiency. The running time of DEG and SIM is better than that

of MNS: on the five test subgraphs, the runtime of MNS is on

average 12.89 times that of DEG and 12.33 times that of SIM.

2759

 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

20% 40% 60% 80% 100%

Δ

MNS DEG SIM

(a) Improvement Amount

10-2

10-1

100

101

102

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

MNS DEG SIM

(b) Running Time

Fig. 12: The Test of the Scalability

 0
 2
 4
 6
 8

 10
 12
 14

1 2 3 4 5 6

Δ

MNS BRU

(a) Improvement Amount

10-3
10-2
10-1
100
101
102
103
104
105
106

1 2 3 4 5 6

T
im

e
(s

ec
)

MNS BRU

(b) Running Time

Fig. 13: The Comparison with the Exact Solution

However, MNS can finish the computation within 16 seconds

on all test subgraphs. This suggests that by sacrificing some

runtime (but still runs in seconds), MNS can achieve better

effectiveness (regarding the improvement amount) than DEG
and SIM. This sacrifice is desirable for the MN problem where

the optimization objective (i.e., the improvement amount) is

discrete. For example, suppose SCAN calls a vertex a core

vertex when its ε-neighborhood size reaches a discrete value μ.

Given a budget, assume that MNS increases the size of a vertex

to μ, but DEG and SIM can only increase the size to μ − 1.

In this case, although MNS has only one more improvement

amount than the others, MNS succeeds in changing the role of

this vertex to a core vertex, while the other methods fail.

Ex-8: Comparison with Exact Solution. We compare our method

MNS with the brute force (exact) method (denoted as BRU).

BRU enumerates all combinations of (up to) k edges, where k
is the budget, to obtain the (maximum possible) improvement

amount of a certain target vertex. Since BRU cannot complete

the computation on the graphs listed in Table I in a reasonable

time, the small graph SOUT3 [42], [43] is used. SOUT is an

interaction network with 18 vertices and 64 edges. We change

the budget k from 1 to 6 and use each vertex as a target vertex

to count the average improvement amount as well as the running

time. The results are presented in Fig. 13.

• Effectiveness. BRU is an exact algorithm, so its improvement

amount must be greater than that of MNS. However, the gap

is limited: as budget k is varied from 1 to 6, the improvement

amount of BRU is on average 1.28 times that of MNS.

• Efficiency. When k is changed from 1 to 6, the running time

of BRU is 10.08, 29.2, 1252.51, 45207.66, 1354701.93, and

37326338.56 times that of MNS, respectively. In particular,

when k is 6, BRU takes over 4 days to finish, whereas MNS
takes less than 0.01 seconds. Due to the long computation time,

BRU is infeasible in practice. In contrast, our method guar-

antees a short running time by sacrificing some improvement

amount (but still within 1.28 times of the exact algorithm).

C. Results of Dual Problem

The MN problem, which is to maximize the target vertex t’s
ε-neighborhood size with a given budget k, is the focus of this

3https://networkrepository.com/ia-southernwomen.php

 10

 100

LAST DEEZ WIKI TWIT FACE GITH

C
os

t

 MNS DEG SIM

Fig. 14: The Comparison for the Dual Problem

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

2 3 4 5 6 7 8 9 10

C
os

t

MNS DEG SIM

(a) LAST

 0

 50

 100

 150

 200

 250

2 3 4 5 6 7 8 9 10

C
os

t

MNS DEG SIM

(b) DEEZ

Fig. 15: The Effect of Parameter μ for the Dual Problem

paper. As a dual of the MN problem, we want to minimize the

number of inserted edges (i.e., the total cost) so that the target

vertex has a specific neighborhood size μ. The significance of

this dual problem is that we can know how to convert non-core

vertices (e.g., outlier vertices) to core vertices with the fewest

edges. In practice, SCAN can be used for anomaly detection,

which works by identifying outlier vertices as anomalies [44]–

[46]. Solving the dual problem allows us to assess the robustness

of SCAN for anomaly detection.

Our proposed method MNS, as well as baselines like DEG and

SIM, can be easily adapted to solve this dual problem. The basic

idea is that we still choose one vertex per round, but the stopping

condition shifts from the total cost exceeding the budget to t’s ε-
neighborhood size reaching the required μ. For the dual problem,

we use the total cost at stopping as an evaluation metric.

Ex-9: Comparison Between Different Methods. To compare the

performance of various methods for solving this dual problem,

we set the value of ε to 0.6 and the value of μ to 5, as suggested

by recent work in SCAN [4]. To fairly compare different methods,

we randomly selected 30 target vertices whose ε-neighborhood

size is 1 in the graph. The total cost is averaged across the 30
vertices, and the results are shown in Fig. 14. We discover the

following.

• MNS outperforms the baselines. On the graphs used, DEG
requires on average 2.17 times the cost of our method MNS
and SIM requires 1.31 times the cost of MNS. Note that a low

cost means that a method is more effective. These results show

that our method MNS outperforms the baselines in solving the

dual problem of MN.

Ex-10: Effect of Parameter μ. In Ex-9, we set μ to 5. To see the

effect of μ, we varied the value of μ from 2, 5, 10, 12 to 15.

Due to space constraints, we only report results on the first two

graphs (LAST and DEEZ) in Fig. 15. Similar results are observed

on the other graphs, and we have the following finding.

• The cost of all methods increases as μ varies. When μ rises, the

cost needed for all methods (MNS, DEG, and SIM) increases

as well. This is reasonable because as μ grows, we have to add

more vertices to the target vertex’s ε-neighborhood, resulting

in higher costs.

• MNS performs the best for all μ values. Although the cost of

MNS increases as ε rises, MNS outperforms the other methods

2760

for all values of μ. This means that MNS’s superiority in

solving the dual problem is not affected by μ.

VI. CONCLUSION

We present and solve the MN problem in this paper. We first

demonstrate the challenge of the MN problem by showing that it

is both NP-hard and APX-hard. Furthermore, we show that this

problem is neither submodular nor monotonic. To bypass this

problem’s non-monotonicity nature, we switch from enumerating

edges to selecting vertices, and identify two key subproblems:

local promotion and global selection. By solving these subprob-

lems, we obtain the algorithm to solve the MN problem. The

experimental results on real graphs validate the effectiveness of

our algorithm. Our subsequent work includes considering more

factors in defining the MN problem and designing more effective

and efficient algorithms for solving the MN problem.

Acknowledgements. Min Gao is supported by the National

Natural Science Foundation of China (62176028). Lu Qin is

supported by ARC FT200100787 and DP210101347.

APPENDIX

Proof of Lemma 1. Suppose l edges are inserted into G, then

σG′(t, v) = dG′ [t,v]√
dG′ [t]×dG′ [v]

= dG[t,v]+l√
dG[t]×(dG[v]+l)

since

1) dG′ [t, v] = dG[t, v] + l as l vertices in NG[t− v] become the

shared neighbors of t and v in G′;
2) dG′ [v] = dG[v] + l as v connects to l vertices in NG[t− v];
3) dG′ [t] = dG[t] as no edge is attached to t.

We then prove that σG′(t, v) > σG(t, v).

σG′ (t,v)
σG(t,v) =

dG[t,v]+l√
dG[t]×(dG[v]+l)

dG[t,v]√
dG[t]×dG[v]

=

√
(1+ l

dG[t,v]
)2

1+ l
dG[v]

≥
√

(1+ l
dG[v]

)2

1+ l
dG[v]

> 1.

Proof of Lemma 2. Similar to the proof of Lemma 1.

Proof of Lemma 3. Suppose x (0 ≤ x ≤ l) edges are chosen from

{(v, w)|w ∈ NG[t − v]}, and l − x edges are from {(t, w)|w ∈
NG[v − t]}, then

1) dG′ [t, v] = dG[t, v] + l as l new common neighbors are

formed, x from NG[t− v] and l − x from NG[v − t];
2) dG′ [v] = dG[v] + x as v connects to x vertices in NG[t− v];
3) dG′ [t] = dG[t] + (l − x) as t connects to l − x vertices in

NG[v − x].

The similarity in G′ is σG′(t, v) = dG[t,v]+l√
(dG[t]+l−x)(dG[v]+x)

.

Since the numerator dG[t, v] + l is the same for all assignment

of x, to maximize σG′(t, v), we need to minimize the denominator

f(x) = (dG[t] + l− x)(dG[v] + x). We take the first and second

order derivatives of f(x): f ′(x) = −2x + (dG[t] − dG[v] + l),
f ′′(x) = −2. This means f(x) takes the minimum value when

x = l (choosing l edges from {(v, w)|w ∈ NG[t− v]}) or x = 0
(choosing l edges from {(t, w)|w ∈ NG[v − t]}).
Proof of Lemma 4. By the proof of Lemma 3, σs1

G′(t, v) =
dG[t,v]+l√

dG[t]×(dG[v]+l)
and σs2

G′(t, v) =
dG[t,v]+l√

(dG[t]+l)×dG[v]
.

We then derive the condition when σs1
G′(t, v) > σs2

G′(t, v):

∵ σs1
G′ (t,v)

σs2
G′ (t,v)

=

dG[t,v]+l√
dG[t]×(dG[v]+l)

dG[t,v]+l√
(dG[t]+l)×dG[v]

=
√

(dG[t]+l)×dG[v]
dG[t]×(dG[v]+l)

> 1

∴ (dG[t] + l)× dG[v] > dG[t]× (dG[v] + l).

And it follows that dG[t] < dG[v]. Similarly, we can deduce that

σs1
G′(t, v) < σs2

G′(t, v) yields dG[t] > dG[v].

Proof of Lemma 5. σs3
G′(t, v) =

dG[t,v]+ l
2√

(dG[t]+ l
2)×(dG[v]+ l

2)
since

1) dG′ [t, v] = dG[t, v] +
l
2 as l

2 vertices in V \ {N [v] ∪ N [t]}
become the neighbors of both t and v in G′;

2) dG′ [v] = dG[v] +
l
2 as v connects to l

2 vertices;

3) dG′ [t] = dG[t] +
l
2 as v connects to l

2 vertices.

We prove σs1
G′(t, v) =

dG[t,v]+l√
dG[t]×(dG[v]+l)

> σs3
G′(t, v) and the case

for σs2
G′(t, v) =

dG[t,v]+l√
dG[t]×(dG[v]+l)

> σs3
G′(t, v) is similar.

σs1
G′ (t,v)

σs3
G′ (t,v)

= dG[t,v]+l

dG[t,v]+ l
2

×
√

dG[t]×(dG[v]+l)

(dG[t]+ l
2)×(dG[v]+ l

2)

> dG[t,v]+l

dG[t,v]+ l
2

×
√

dG[t]

dG[t]+ l
2

=
√

(dG[t,v]+l)2×dG[t]

(dG[t,v]+ l
2)

2×(dG[t]+ l
2)
.

We claim the above equation is greater than 1 because:

(dG[t, v] + l)2 × dG[t]− (dG[t, v] +
l
2
)2 × (dG[t] +

l
2
)

= (dG[t, v]× dG[t]× l − dG[t, v]
2 × l) + (3

4
dG[t]× l2 − 1

8
l3)

> 0 ∵ dG[t] ≥ dG[t, v], dG[t] ≥ l.

Proof of Lemma 6. σG′(t, u) = dG[t,u]√
(dG[t]+|T |)×dG[u]

<

σG′(t, u) = dG[t,u]√
dG[t]×dG[u]

if t connects to the vertices in T , since

1) dG′ [t, u] = dG[t, u] as NG[u] ∩ T = ∅;
2) dG′ [u] = dG[u] as no vertex connects to u;

3) dG′ [t] = dG[t] + |T | as t connects to vertices in T .

Proof of Lemma 7. Before inserting l edges, σG(t, u) =
dG(t,u)√

dG[t]×dG[u]
≥ ε by definition. When l edges are added between

t and T , σG′(t, u) ≥ dG(t,u)+l√
(dG[t]+l)×(dG[u]+l)

since

1) dG′ [t, u] = dG[t, u]+l as l common neighbors (T) are formed;

2) dG′ [u] ≤ dG[u] + l as T and NG[u] may overlap;

3) dG′ [t] = dG[t] + l as l edges are added between t and T .

We then prove that σG′(t, u) ≥ σG(t, u) ≥ ε.

σG′ (t,u)
σG(t,u) = dG[t,u]+l

dG[t,u] ×
√

dG[t]×dG[u]
(dG[t]+l)×(dG[u]+l)

=
√

(dG[u,t]+l)2×dG[t]×dG[u]
dG[u,t]2×(dG[t]+l)×(dG[u]+l) .

We claim the above equation is greater than 1 because:

(dG[t, v] + l)2 × dG[t]− (dG[t, v] +
l
2
)2 × (dG[t] +

l
2
)

= (dG[t, v]× dG[t]× l − dG[t, v]
2 × l) + (3

4
dG[t]× l2 − 1

8
l3)

> 0 ∵ dG[t] ≥ dG[t, v], dG[t] ≥ l.

Proof of Theorem 4. The similarity of any vertex pair can be

computed in O(dmax) [4]. For ∀u ∈ N ε
G[t], we compute its

similarity with t at most |T | times.

Proof of Lemma 8. To make σG′(t, v) = dG[t,v]+l√
dG[t]×(dG[v]+l)

= ε,

we solve Equation 3.

l2 +(2dG[t, v]− ε2dG[t])× l+(dG[t, v]
2− ε2dG[t]×dG[v]) = 0. (3)

Equation 3 always has a solution since:

c = (2dG[t, v]− ε2dG[t])
2 − 4× (dG[t, v]

2 − ε2dG[t]× dG[v])
= 4ε2dG[t](dG[v]− dG[t, v]) + ε4dG[t]

2 ≥ 0.

And the solutions are
b±√c

2 , where b = ε2dG[t]− 2dG[t, v].

Proof of Theorem 6. MNS works for at most k rounds. It scans

at most |V | vertices per round. For ∀v ∈ V , it takes O(|N ε
G[t]| ·

dmax) to handle the side effect and O(dmax) to obtain the cost

by Equations 1-2.

2761

REFERENCES

[1] H. Shiokawa, Y. Fujiwara, and M. Onizuka, “Scan++ efficient algorithm for
finding clusters, hubs and outliers on large-scale graphs,” Proceedings of the
VLDB Endowment, vol. 8, no. 11, pp. 1178–1189, 2015.

[2] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM
Computing Surveys (CSUR), vol. 40, no. 1, pp. 1–39, 2008.

[3] R. Angles, “A comparison of current graph database models,” in 2012 IEEE
28th International Conference on Data Engineering Workshops. IEEE,
2012, pp. 171–177.

[4] L. Chang, W. Li, L. Qin, W. Zhang, and S. Yang, “pscan: Fast and exact
structural graph clustering,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 2, pp. 387–401, 2017.

[5] S. E. Schaeffer, “Graph clustering,” Computer science review, vol. 1, no. 1,
pp. 27–64, 2007.

[6] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Recommender
systems for large-scale e-commerce: Scalable neighborhood formation using
clustering,” in Proceedings of the fifth international conference on computer
and information technology, vol. 1. Citeseer, 2002, pp. 291–324.

[7] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[8] M. E. Newman and M. Girvan, “Finding and evaluating community structure
in networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004.

[9] P. Jiang and M. Singh, “Spici: a fast clustering algorithm for large biological
networks,” Bioinformatics, vol. 26, no. 8, pp. 1105–1111, 2010.

[10] T. Tseng, L. Dhulipala, and J. Shun, “Parallel index-based structural graph
clustering and its approximation,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 1851–1864.

[11] B. Ruan, J. Gan, H. Wu, and A. Wirth, “Dynamic structural clustering on
graphs,” in Proceedings of the 2021 International Conference on Manage-
ment of Data, 2021, pp. 1491–1503.

[12] X. Xu, N. Yuruk, Z. Feng, and T. A. Schweiger, “Scan: a structural clus-
tering algorithm for networks,” in Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2007,
pp. 824–833.

[13] W. Zhao, V. Martha, and X. Xu, “Pscan: a parallel structural clustering
algorithm for big networks in mapreduce,” in 2013 IEEE 27th International
Conference on Advanced Information Networking and Applications (AINA).
IEEE, 2013, pp. 862–869.

[14] S. Lim, S. Ryu, S. Kwon, K. Jung, and J.-G. Lee, “Linkscan*: Overlapping
community detection using the link-space transformation,” in 2014 IEEE
30th international conference on data engineering. IEEE, 2014, pp. 292–
303.

[15] H. Shiokawa, T. Takahashi, and H. Kitagawa, “Scalescan: scalable density-
based graph clustering,” in International Conference on Database and Expert
Systems Applications. Springer, 2018, pp. 18–34.

[16] M.-S. Kim and J. Han, “A particle-and-density based evolutionary clustering
method for dynamic networks,” Proceedings of the VLDB Endowment,
vol. 2, no. 1, pp. 622–633, 2009.

[17] H. Sun, J. Huang, J. Han, H. Deng, P. Zhao, and B. Feng, “gskeletonclu:
Density-based network clustering via structure-connected tree division or
agglomeration,” in 2010 IEEE International Conference on Data Mining.
IEEE, 2010, pp. 481–490.

[18] D. Wen, L. Qin, Y. Zhang, L. Chang, and X. Lin, “Efficient structural graph
clustering: an index-based approach,” Proceedings of the VLDB Endowment,
vol. 11, no. 3, pp. 243–255, 2017.

[19] X. Jin, C. X. Lin, J. Luo, and J. Han, “Socialspamguard: A data mining-
based spam detection system for social media networks,” Proceedings of the
VLDB Endowment, vol. 4, no. 12, pp. 1458–1461, 2011.

[20] W. Li, M. Gao, F. Wu, W. Rong, J. Wen, and L. Qin, “Manipulating black-
box networks for centrality promotion,” in 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 2021, pp. 73–84.

[21] G. Stringhini, C. Kruegel, and G. Vigna, “Detecting spammers on social
networks,” in Proceedings of the 26th annual computer security applications
conference, 2010, pp. 1–9.

[22] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda, “All your contacts are belong
to us: automated identity theft attacks on social networks,” in Proceedings
of the 18th international conference on World wide web, 2009, pp. 551–560.

[23] S. Webb, J. Caverlee, and C. Pu, “Social honeypots: Making friends with a
spammer near you.” in CEAS, 2008, pp. 1–10.

[24] A. E. Cinà, A. Torcinovich, and M. Pelillo, “A black-box adversarial attack
for poisoning clustering,” Pattern Recognition, vol. 122, p. 108306, 2022.

[25] B. Biggio, S. R. Bulò, I. Pillai, M. Mura, E. Z. Mequanint, M. Pelillo, and
F. Roli, “Poisoning complete-linkage hierarchical clustering,” in Joint IAPR
International Workshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR). Springer,
2014, pp. 42–52.

[26] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial
attack on graph structured data,” in International conference on machine
learning. PMLR, 2018, pp. 1115–1124.

[27] P. Dey and S. Medya, “Manipulating node similarity measures in networks,”
arXiv preprint arXiv:1910.11529, 2019.

[28] E. Rosenfeld, E. Winston, P. Ravikumar, and Z. Kolter, “Certified robust-
ness to label-flipping attacks via randomized smoothing,” in International
Conference on Machine Learning. PMLR, 2020, pp. 8230–8241.

[29] B. Kadri, A. M’hamed, and M. Feham, “Secured clustering algorithm for
mobile ad hoc networks,” International Journal of Computer Science and
Network Security, vol. 7, no. 3, pp. 27–34, 2007.

[30] J. Jia, B. Wang, X. Cao, and N. Z. Gong, “Certified robustness of com-
munity detection against adversarial structural perturbation via randomized
smoothing,” in Proceedings of The Web Conference 2020, 2020, pp. 2718–
2724.

[31] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay,
“A survey on adversarial attacks and defences,” CAAI Transactions on
Intelligence Technology, vol. 6, no. 1, pp. 25–45, 2021.

[32] W. Jin, Y. Li, H. Xu, Y. Wang, S. Ji, C. Aggarwal, and J. Tang, “Adversarial
attacks and defenses on graphs,” ACM SIGKDD Explorations Newsletter,
vol. 22, no. 2, pp. 19–34, 2021.

[33] J. Crussell and P. Kegelmeyer, “Attacking dbscan for fun and profit,” in
Proceedings of the 2015 SIAM International Conference on Data Mining.
SIAM, 2015, pp. 235–243.

[34] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.” in Kdd, vol. 96,
no. 34, 1996, pp. 226–231.

[35] A. Chhabra, A. Roy, and P. Mohapatra, “Suspicion-free adversarial attacks
on clustering algorithms,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 04, 2020, pp. 3625–3632.

[36] B. Biggio, I. Pillai, S. Rota Bulò, D. Ariu, M. Pelillo, and F. Roli, “Is data
clustering in adversarial settings secure?” in Proceedings of the 2013 ACM
workshop on Artificial intelligence and security, 2013, pp. 87–98.

[37] Y. Chen, Y. Nadji, A. Kountouras, F. Monrose, R. Perdisci, M. Antonakakis,
and N. Vasiloglou, “Practical attacks against graph-based clustering,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1125–1142.

[38] A. Vasudeva and M. Sood, “Sybil attack on lowest id clustering algorithm
in the mobile ad hoc network,” International Journal of Network Security
& Its Applications, vol. 4, no. 5, p. 135, 2012.

[39] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity
of computer computations. Springer, 1972, pp. 85–103.

[40] U. Feige, “A threshold of ln n for approximating set cover,” Journal of the
ACM (JACM), vol. 45, no. 4, pp. 634–652, 1998.

[41] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset
collection,” http://snap.stanford.edu/data, Jun. 2014.

[42] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: https://networkrepository.com

[43] A. Davis, B. B. Gardner, and M. R. Gardner, “Deep south chicago,” 1941.
[44] Z. Peng, M. Luo, J. Li, H. Liu, and Q. Zheng, “Anomalous: A joint modeling

approach for anomaly detection on attributed networks.” in IJCAI, 2018, pp.
3513–3519.

[45] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and
description: a survey,” Data mining and knowledge discovery, vol. 29, no. 3,
pp. 626–688, 2015.

[46] R. Yu, H. Qiu, Z. Wen, C. Lin, and Y. Liu, “A survey on social media
anomaly detection,” ACM SIGKDD Explorations Newsletter, vol. 18, no. 1,
pp. 1–14, 2016.

2762

