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Abstract
Distance labeling approaches are widely adopted to speed up the online performance of shortest-distance queries. The
construction of the distance labeling, however, can be exhaustive, especially on big graphs. For a major category of large
graphs, small-world networks, the state-of-the-art approach is pruned landmark labeling (PLL). PLL prunes distance labels
based on a node order and directly constructs the pruned labels by performing breadth-first searches in the node order. The
pruning technique, as well as the index construction, has a strong sequential nature which hinders PLL from being parallelized.
It becomes an urgent issue on massive small-world networks whose index can hardly be constructed by a single thread within
a reasonable time. This paper first scales distance labeling on small-world networks by proposing a parallel shortest-distance
labeling (PSL) scheme. PSL insightfully converts the PLL’s node-order dependency to a shortest-distance dependence, which
leads to a propagation-based parallel labeling in D rounds where D denotes the diameter of the graph. To further scale up PSL,
it is critical to reduce the index size. This paper proposes effective index compression techniques based on graph properties
as well as label properties; it also explores best practices in using betweenness-based node order to reduce the index size. The
efficient betweenness estimation of the graph nodes proposed may be of independent interest to graph practitioners. Extensive
experimental results verify our efficiency on billion-scale graphs, near-linear speedup in a multi-core environment, and up to
94% reduction in the index size.
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1 Introduction

Given a graph G, a shortest-distance query q(s, t) reports a
minimized length of an s−t path on G. It is a fundamental
primitive as either a main function or a building block of
applications such as geographic navigation, Internet routing,
socially tenuous group finding [41], influential community
searching [29] and event detection [40]. Many of these appli-
cations cannot afford frequent online distance computations,
and therefore, 2-hop labeling [17] and its variations prevail
as indexing techniques.

The index size of 2-hop labeling, however, can be
quadratic to the number n of the nodes in the graph. For
each node v, 2-hop labeling selects a set of nodes as hubs
and tags v with its distances to its hubs as labels. A query
q(s, t) minimizes, over all hubs r shared by s and t , the 2-
hop distances from s to t via r , i.e., dist(s, r) + dist(r , t).
To report a precise distance, the shared hubs of s and t must
hit—have a common node with—a shortest path between s
and t . Such a requirement over all pairs, s and t , of nodes
is called the 2-hop cover constraint. A label set that satisfies
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the 2-hop cover constraint can have a cardinality quadratic to
n, especially on dense graphs. For example, a clique neces-
sitates �(n2) labels.

Finding a global minimum index size of 2-hop labeling,
unfortunately, is NP-hard [17]. A local minimum, instead,
can be reached by iteratively pruning redundant labels.1 A
label of a node v is redundant if the remaining labels in the
label set still satisfy the 2-hop cover constraint. The pruning
technique, however, has a strong sequential nature—pruning
one label will affect the redundancy of another label. Con-
sider two nodes u and v on the same shortest path between
two nodes s and t . The moment when both s and t have the
hub set of {u, v}, all labels on s and t are redundant. After
pruning the label on s with the hub u, however, both labels
on s and t with the hub v become critical. Due to such a
dependency, the order of the pruning has a great influence on
the pruning outcome and effectiveness.

The optimization of the pruning order is based on graph
properties. For example, the planarity and hierarchical struc-
ture of road networks have been well explored to reach
a scalable solution (see [33] as an entrance). For a major
category of real graphs, small-world [43,45] networks, the
state-of-the-art approach is pruned landmark labeling (PLL)
[4].

The key to PLL’s success on small-world networks is to
encode the highly clustered topology into a node order and
construct/prune labels strictly following the node order.

1. PLL prunes labels based on a node order that prioritizes the
high-centrality2 nodes. The label on a node s to its hub t is
pruned if their distance can be answered by labels from s
and t to a higher ranked hub. Therefore, a high-centrality
hub r is able to prune labels along a large number (due to
the clustered topology of the graph) of shortest paths hit
by r .

2. PLL prunes amajority of labels in an implicit way. In other
words, PLL constructs pruned labels directly as opposed
to following a construct-and-then-prune paradigm. This is
done by performing a pruned breadth-first-search (BFS)
sourced froma hub r with the assignment of r sequentially
following the node order.

It is worth noting that the index construction of PLL is
highly node-order dependent: the pruning procedure in the
BFS of hub r is dependent on the pruned labels constructed
for the predecessor, in the node order, of r . Such a strong
sequential nature of PLL hinders its parallelization.

1 In many labeling approaches, the labels are pruned in an implicit
way—a label will not be generated if pruning it is guaranteed to be
safe.
2 The centrality can be definedwith degree, closeness, and betweenness
[31].

On the other hand, the index time becomes an urgent issue
for massive small-world networks whose index can hardly be
constructed by a single thread within a reasonable time. For
example, for the graph SINA3 with 58 million nodes and
261 million edges, PLL cannot finish the indexing within 3
days. The same situation applies toUK4 which has 77million
nodes and 2.9 billion edges.

This paper focuses on the scalability issue of the 2-hop
distance labeling of small-world networks. We propose non-
trivial algorithms to parallelize the indexing process of PLL
and further reduce the index size. The scalability of our pro-
posed approach is confirmed by extensive experiments. Our
contributions are summarized as follows.

– Wepropose a parallel shortest-distance labeling approach
PSL upon a novel and insightful conversion from the
node-order label dependency ofPLL to a shortest-distance
label dependency. This conversion leads to a non-trivial
propagation based labeling process. The algorithm com-
pletes in D rounds where D denotes the diameter of the
graph—small for small-world networks. The resulting
labels are identical to those constructed in the sequential
algorithm of PLL.

– We provide two compression techniques to reduce the
index size. The first one is based on graph properties and
is thus applicable to all 2-hop labeling approaches; the
second one explores the property of PSL, which leads to
significant index reduction.

– We further explore best practices in using betweenness-
based node order to reduce the index size. Given the
quadratic time (infeasible for big graphs) in comput-
ing exact betweenness, we introduce k-betweenness—
betweenness onpathswith nomore than k hops—to allow
(i) an efficient sampling-based approximation and (ii) a
holistic optimization of the node order for index reduc-
tion. Thenovel and efficient sampling-based approximate
computation of node betweenness is the key to this reduc-
tion and may be of independent interest.

– We conduct extensive experiments to verify the per-
formance of the proposed techniques. In a single-core
environment, our index reduction technique dramatically
shrinks the index size and improves the index time. In a
multi-core environment, our PSL approach shows near-
linear speed-up in parallelism. The proposed techniques
jointly enable the index construction on networks with
billion scale offline, which verifies the efficiency of the
proposed approach.

3 http://networkrepository.com/index.php.
4 http://law.di.unimi.it.
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The rest of the paper is organized as follows. Section 2
introduces the state-of-the-art 2-hop labeling approach on
small-world networks. Section 3 devises a distance labeling
algorithm. Section 4 introduces two index reduction tech-
niques. Section 5 computes the betweenness-based node
order by proposing novel approximation algorithms, which
further reduced the index size. Section 6 summarizes related
works. Section 7 experimentally evaluates our proposed
approaches on real small-world networks, and Sect. 8 con-
cludes the paper.

2 Preliminary

2.1 Shortest-distance problem

LetG be an unweighted graphwith vertex set VG and edge set
EG . Denote by n and m the number |VG | of nodes and |EG |
of edges in the graph, respectively. For each node v ∈ VG ,
denote by N (v) = {u|(u, v) ∈ EG} the neighbors of v and
deg(v) = |N (v)| the degree of node v in G. We mainly
use undirected graphs in the paper; Appendix B extends our
techniques to directed graphs. Without loss of generality, we
assume a connected graphG. Our techniques can be extended
to disconnected graphs easily.

Let p(s, t) = {v1, v2, . . . , vk} with s = v1 to t = vk . p
is a path on G if, for ∀1 ≤ i ≤ k, edge (vi , vi+1) ∈ EG .
For an i ∈ [1, k], denote by p(s, t) = p(s, vi ) + p(vi , t) the
concatenation of two paths. The length of a path p(s, t) is
the number of edges on the path, i.e., |p(s, t)| = k − 1. The
shortest path between s and t is the path with shortest length.
The shortest length is the length of the shortest path, denoted
as distG(s, t). Given a graph G, a point-to-point distance
query q(s, t) with s, t ∈ V returns the shortest distance
distG(s, t) between s and t . When the context is clear, we
use V , E, N (v), deg(v), dist(s, t) to represent the node set,
edge set, neighbor set of v, the degree of v and the shortest
distance from s to t , respectively, for simplicity.

Example 1 Figure 1 shows a network G = (V , E) with
12 nodes and 23 edges. The neighbors of v6 are N (v6) =
{v2, v3, v7}. Two paths between v4 and v6 are p1(v4, v6) =
{v4, v3, v6}, p2(v4, v6) = {v4, v1, v2, v6}. The shortest path
p1(v4, v6) has the shortest length 2.

2.2 2-Hop labeling for distance queries

To efficiently process point-to-point distance queries, 2-hop
labeling approach [17] precomputes the distances from each
node to preselected hub nodes and uses the 2-hop distances
via hubs to answer a query. Below we introduce the 2-hop
labeling approach that has been slightly updated [4,20,26] to
enable label reduction.

A labeling function L maps each node v ∈ V to a label
set L(v). L(v) consists of a set of label entries where each
entry is a key/value pair (u, dist(v, u))with a node u ∈ V and
the distance between v and u. The hubnodes of v are the pro-
jections of L(v) on the key, i.e., C(v) = {u|(u, dist(v, u)) ∈
L(v)}. C is called the hub function of L . {L(v)|v ∈ V } is
a 2-hop labeling if L satisfies the 2-hop cover constraint
below.

Definition 1 (2-hop Cover Constraint [17]) A labeling func-
tion L satisfies the 2-hop cover constraint if for any node pair
s and t , C(s) ∩C(t) shares a node with a shortest path from
s to t .

For a 2-hop labeling L , the label size |L(v)| of a node v is
the number of entries in L(v). Denote by δ the largest label
size of G, i.e., δ = maxv∈V (|L(v)|).

Given a 2-hop labeling L , a distance query q(s, t) is
answered with Query(s, t, L) defined below.

Query(s, t, L) = min
u∈C(s)∩C(t)

dist(s, u) + dist(u, t)

Lemma 1 For a 2-hop labeling L that satisfies the 2-hop
cover constraint, Query(s, t, L) = dist(s, t).

Proof See Appendix A. ��
Assume that the label entries in each label set are stored in

the ascending order of the key. The online cost of answering
q(s, t) is on retrieving and merging the entries in L(s) and
L(t). Thus, the query time complexity is O(|L(s)|+ |L(t)|).

2.3 Pruned landmark labeling approach

Pruned landmark labeling approach (PLL) is the state-of-the-
art 2-hop labeling approach on small-world networks.
Node Order. The effectiveness of PLL heavily relies on a
total order r on V , called the node order. For two nodes u
and v, if r(u) > r(v), we say u has a higher rank than v.
With the node order defined, we can safely rename the nodes
such that

r(v1) > r(v2) > · · · > r(vn).

A highly prevalent node order is degree-based: the order
r prioritizes nodes with higher degrees and breaks ties based
on original node ID. Specifically, for any two nodes v and v′,
r(v) > r(v′) if

– deg(v) > deg(v′) or
– deg(v) = deg(v′) and ID(v) > ID(v′).

This paper uses degree-based node order by default unless
another node order is specified in the context.
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Fig. 1 Graph G

Example 2 We rank the nodes in Fig. 1 according to their
degrees. When two nodes have the same degree, the tie is
broken by the original ID of the node. We re-order the nodes
such that r(v1) > r(v2) > · · · > r(v12).

PLL with Pruned BFS. Algorithm 1 shows the process of
PLL. Given a graph G and a node order v1, v2, . . . , vn , PLL
constructs a pruned 2-hop labeling LPLL in n rounds (Line 1).
In the i-th round, i ∈ [1, n], PLL performs a pruned BFS
search (a standard BFS search apart from Lines 6–8) sourced
from vi . To prune the BFS, PLL tests if the existing index can
already report the distance between vi and a node u (Line 6).
If yes, u will neither be labeled nor expanded in this round
(Line 7); otherwise, a label with hub vi will be added to
u (Line 8) and u will be expanded right away (Lines 9–
12). Obviously, on the nodes that are either unexpanded or
unreached, the labels with hub vi are conceptually pruned.

Lemma 2 [4] The index of PLL satisfies the 2-hop cover con-
straint.

Algorithm 1: PLL
Input: Graph G(V , E)

Output: The index LPLL

1 for i = 1, 2, . . . , n do
2 Q ← a queue with only one element vi ;
3 dist(vi ) ← 0 and dist(v) ← ∞,∀v ∈ V \vi ;
4 while Q �= ∅ do
5 u ← Q.pop();
6 if Query(vi , u, LPLL) ≤ dist(u) then
7 continue;

8 LPLL(u) ← LPLL(u) ∪ {(vi , dist(u))};
9 for w ∈ N (u) do

10 if dist(w) = ∞ then
11 dist(w) ← dist(u) + 1;
12 Q.push(w);

13 return LPLL ;

The runtime of PLL for labeling large graphs can be
very long. As shown in Line 6 of Algorithm 1, the query
function to calculate the distance between vi and u (i.e.,

Q(vi , u, LPLL)) takes O(δ) time. The number of function
calls is �u∈V�r∈C(u)deg(u), which may reach δm in the
worst case. This leads to a rather high time cost in terms of
function calls for PLL, which is confirmed by our extensive
empirical studies: PLL takes more than 3 days for labeling the
graph SINA with 58 million nodes and 261 million edges.
Remarks.Note that PLL can work with any total order on V .
Since there are |V |! different total orders on V (the number of
permutations of nodes in V ), the selection of the node order
in optimizing the space and/or temporal efficiency of PLL
remains an open problem. It has been suggested by exist-
ing literature [31] that betweenness-centrality-based node
order may be better than degree-based node order; however,
improving PLL based on betweenness centrality faces the two
challenges listed below.

– The computation of the exact betweenness centrality is
as expensive as computing pairwise shortest distances,
which is unaffordable on large graphs.

– The best practice of optimizing PLL based on approxi-
mate betweenness, that is, cost-effectively estimating the
betweenness to reduce the index size of PLL is yet to be
explored.

Part of this paper will dedicate to exploring betweenness
centrality in forming a better distance index. Specifically,
Sect. 2.4will introduce the definition of betweenness central-
ity; Sect. 5 will propose a better algorithm for distance index
construction based on a novel sampling-based betweenness
centrality computation.

2.4 Node order: betweenness centrality

This paper actively explores the computation and application
of betweenness-centrality-based node order in improving
the efficiency of distance indexing. This section introduces
betweenness centrality related concepts.

Given a graph G(V , E) and two nodes s, t ∈ V , denote
by σs,t the number of different shortest paths between s and
t (note that two different shortest paths between s and t can
overlap on some nodes). Denoted by σs,t (v), for ∀v ∈ V , the
number of, among all the s-t shortest paths, shortest paths
through v. If s = t , then σs,t = 1; if v = s or v = t ,
then σs,t (v) = 0. We now define, for each node v ∈ V , its
betweenness bc(v).

Definition 2 (Betweenness) Given graph G(V , E), for ∀v ∈
V , betweenness centrality

bc(v) =
∑

s,t∈V
σs,t (v)

σs,t
.

Example 3 For node pair v3, v10 in Fig. 1, there are two
shortest paths between them: p1(v3, v10) = {v3, v2, v10},
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and p2(v3, v10) = {v3, v1, v10}. Then, σv3,v10 = 2. Since
only p1(v3, v10) passes through v2, then σv3,v10(v2) = 1.
σv3,v10(v9) = 0 because there is no v3-v10 shortest path
through v9.

The betweenness centrality costs quadratic [13] time
to compute, which is expensive for big graphs. For effi-
ciently estimating betweenness centrality, we also resort to
k-betweenness [14], a variation of betweenness centrality.
Given a positive integer k, k-betweenness is defined for each
node v ∈ V by considering only shortest pathswhose lengths
are no more than k.

Definition 3 (k-Betweenness [14]) Given a graph G(V , E)

and an integer k ≥ 0, the k-betweenness

kbc(v) =
∑

s,t∈V ,dist(s,t)≤k

σs,t (v)

σs,t
, for each v ∈ V .

k-betweenness is ameaningful approximationof thebetween-
ness centrality since k-betweenness is exactly the between-
ness centrality when k approaches the diameter (the longest
shortest path) of the graph. Itwas proposed sincepaths of long
distances are less likely to form new edges, e.g., friendships
in a social network [12] or a joint work in a collaboration
network.

Example 4 If k is set to 2, then node pair v10, v12 contributes
nothing to k-betweenness of other nodes since their shortest
distance dist(v10, v12) = 3.

kbc(v) is an aggregation over all the shortest paths of
lengths no larger than k. To simplify the discussions on the
computation of kbc(v), we introduce the concept of partial
k-betweenness kbcs(v) which is the portion of kbc(v) con-
tributed by paths starting from node s.

Definition 4 (Partial k-Betweenness) Given graph G(V , E),
an integer k ≥ 0 and a node s ∈ V ,

for ∀v ∈ V , kbcs(v) =
∑

t∈V ,dist(s,t)≤k

σs,t (v)

σs,t
.

Note that k-betweenness can be easily derived frompartial
k-betweenness

kbc(v) = �s∈V kbcs(v).

Therefore, the computation of kbc(v) boils down to comput-
ing kbcs(v) for each node s ofG. According to the definition
of kbcs(v), it can be observed that kbcs(v) becomes zero if
v is not included in any shortest path sourced at s with ≤ k
length; thus, we have Lemma 3.

Lemma 3 If dist(s, v) ≥ k or dist(s, v) = 0 then kbcs(v) =
0.

Proof If dist(s, v) = 0, kbcs(v) = 0 since σv,t (v) = 0 for
any t ∈ V . If dist(s, v) = k, v can only be the end point
of any s-t shortest path p(s, t) with |p(s, t)| ≤ k. Then,
σs,v(v) = 0. If dist(s, v) > k, there is no s-t path via v with
|p(s, t)| ≤ k, and σs,t (v) = 0. Thus, kbcs(v) = 0. ��

An exact algorithm to compute k-betweenness is pre-
sented in [14]. The basic idea is to perform a graph traversal
sourced from each s ∈ V to compute kbcs(v), for ∀v ∈
V . Compared to betweenness computation, calculating k-
betweenness only needs to visit nodes within a distance k
to each source, thus improving the efficiency. However, for
small-world graphs, the number of nodes within distance k (k
greater than 2) to each source may still be large [42], which
makes the exact k-betweenness computation for large graphs
undesirable.

3 Parallelized distance labeling

Sections 3.1 and 3.2 revisit PLL to identify the label proper-
ties and order dependency. Section 3.3 transforms the order
dependency in PLL to distance dependency. By utilizing the
distance dependency, Sect. 3.4 proposes a practical approach
in constructing the index in parallel.

3.1 Label property

The labels of PLL show an important node-order property.

Theorem 1 For any two nodes ∀u, v ∈ V , v is a hub of u
under PLL, i.e., (v, dist(v, u)) ∈ LPLL(u), if and only if v is
the highest ranked node on all the shortest paths from u to v.

Proof Let S be the set of nodes on all the shortest paths from
u to w. Let w be the highest ranked node in S.

We prove that all nodes in S have w as their hubs in LPLL

by contradiction. Assume that there is a node z in S such that
z does not have a hub of w in LPLL. Consider the round of
Algorithm 1 where the pruned BFS sourcedw is performing.
Let L ′ be the snapshot of the PLL label set right before the
round begins. Given that z has no hub of w, then either

– z is explicitly pruned: Query(z, w, L ′) = dist(w, z), or
– z is implicitly pruned: z is not reached since there is at
least a node z′ on the shortest path from w to z explicitly
pruned with Query(z′, w, L ′) = dist(w, z′).

In either case, it requires a common hub betweenw and z (or
z′) to produce the query result, which is impossible since (i)
z, z′ ∈ S and (ii)w has the highest rank in S and (iii) L ′ does
not include any hub ranked higher than w. Contradiction.

Since all nodes in S havew as their hubs in LPLL, we prove
the two directions of the theorem in two cases: (1) if w = v,
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that is, v is the highest ranked node in S, then v is a hub of
u ∈ S and (2) if r(w) > r(v), when before the pruned BFS
sourced from v is performed, w is already a common hub of
u and v. As w is on the shortest path between u and v, the
label with hub v on u is pruned and not in PLL. ��

Lemmas 4–6 are derived from Theorem 1.

Lemma 4 If v is a hub of u, r(v) > r(u).

Proof Since v has the highest rank on a shortest path from v

to u (Theorem 1), r(v) > r(u). ��
Lemma 5 For ∀u ∈ V , (u, 0) ∈ LPLL(u).

Proof We make the path as p(u, u) and according to Theo-
rem 1, (u, 0) will be always inserted to LPLL(u). ��
Lemma 6 For∀(u, v) ∈ E, (u, 1) ∈ LPLL(v), if r(u) > r(v);
otherwise,(v, 1) ∈ LPLL(u).

Proof Let p(u, v) be the path with an edge. According to
Theorem 1, the higher ranked node is the hub node. ��

3.2 Order dependency

To see the dependency among the labels, we partition
the labels in LPLL according to their hub nodes. Let
v1, v2, · · · , vn be the node order under which label set LPLL

was constructed.
We define two sets with particular meanings. Recall that

PLL has n rounds where the i-th round performs a pruned
BFS sourced from vi . We denote by LPLL

<i (u) the snapshot of
LPLL(u) at the beginning of the i-th round and by LPLL

i (u)

the incremental label of u built in the i-th round.

Definition 5 (Order Specific Label Set)

LPLL
i (u) = {(vi , dist(vi , u)) ∈ LPLL},

for ∀i ∈ [1, n], u ∈ V . Let LPLL
i = ⋃

u∈V LPLL
i (u).

Definition 6 (Order Partial Label Set)

LPLL
<i (u) = {(v j , dist(v j , u)) ∈ LPLL| j < i},

for ∀i ∈ [1, n + 1], u ∈ V . Let LPLL
<i = ⋃

u∈V LPLL
<i (u).

LPLL
<n+1 = LPLL.

The following lemma shows that the pruning condition in
Algorithm 1 leads to an order dependency among labels.

Lemma 7 (Order Dependency) LPLL
i (u) depends on LPLL

<i (u).
Specifically, LPLL

i (u) =
{ {(vi , dist(vi , u))} if Query(vi , u, LPLL

<i ) > dist(vi , u);
∅ otherwise.

Proof Let S be the set of nodes on the shortest path from vi
to u (including vi and u). Let w be the node with the highest
rank in S. If vi = w, according to Theorem 1, (i) vi is a hub
of u and (ii) for ∀v ∈ S\vi , v is a not a hub of vi , and thus
Query(vi , u, LPLL

<i ) > dist(vi , u). If r(vi ) < r(w), then vi is
not a hub of u and label (w, dist(w, vi )), (w, dist(w, u)) ∈
LPLL

<i and thus Query(vi , u, LPLL
<i ) = dist(vi , u). ��

Lemma 7 shows that LPLL
i (u) depends on LPLL

<i (u) while
LPLL

<i (u) depends on LPLL
i−1(u). Such a convolved dependency

can hardly be removed as long as the labels are built in the
node order.

Example 5 Table 1 illustrates how PLL constructs the index.
A cell at the row of vi and the column of v j records the
order specific label of vi at the j-th round. In column v1,
pruned BFS inserts v1 into LPLL

1 (u), ∀u ∈ V . In column
v2, PLL performs pruned BFS and v2 becomes the hub of
{v2, v3, v6, v7, v10} due to the pruning condition of LPLL

1 =
{LPLL

1 (u)|u ∈ V }. The order dependency in the column v7:
partial set LPLL

<7 = ⋃
i<7,u∈V LPLL

i (u) prunes the labels on all
nodes except on v7.

3.3 Distance dependency

To break the order dependency in the label construction, con-
sider the pruning condition of Line 6, Algorithm 1. When
Query(vi , u, LPLL

<i ) = dist(u, vi ) prunes a node label on u,
there must be two labels on u and vi , respectively, to a com-
mon hub w such that dist(u, w) + dist(w, vi ) = dist(u, vi ).
Therefore, dist(u, w) and dist(w, vi ) must be no greater
than dist(u, vi ). In other words, all the labels with distances
greater than dist(u, vi ) have no effect on the query result of
Query(vi , u, LPLL

<i ) and the corresponding pruning outcomes.
From the above intuition, we group the label entries in

LPLL based on their label distances. The rearranged label sets
will pave the way to our parallel shortest-distance labeling
(PSL) approach (Sect. 3.4) and are thus called PSL label sets.
Let D be the diameter of the graph G.

Definition 7 (Distance Specific Label Set)

LPSL
d (u) = {(v, dist(v, u)) ∈ LPLL(u)|dist(v, u) = d},

for ∀u ∈ V , d ∈ [1, D]. Let LPSL
d = {LPSL

d (u)|u ∈ V }.
Similarly, the partial label of a node then becomes the set

of label entries with distance less than a certain distance and
is defined in Definition 8.

Definition 8 (Distance Partial Label Set)

LPSL
<d (u) = {(v, dist(v, u)) ∈ LPLL(u)|dist(v, u) < d},
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2) for ∀u ∈ V , d ∈ [1, D + 1]. Let LPSL = ⋃

u∈V LPSL(u). In
particular, LPSL(u) = LPSL

<D+1(u).

The equivalence of the index LPLL and the novel index
LPSL is given in Theorem 2.

Theorem 2 LPSL = LPLL.

Proof Since all the label (v, dist(v, u)) in LPLL has dist(v, u)

≤ D, LPSL includes all labels in LPLL and has no other labels
according to the definition. ��
Example 6 Table 1 shows a rearrangement of labels in PLL. A
cell with row vi and column j denotes label set of LPSL

j (vi )—
the PLL labels of vi whose distances are j .

Distance Dependency. Definitions 7 and 8 provide us an
opportunity in removing the order dependency in the label
construction process.

Theorem 3 (Distance Dependency) LPSL
d (u) depends on

LPSL
<d . Specifically, given a node u, for a node v ∈ V with

r(v) > r(u) and dist(u, v) = d, (v, dist(v, u)) ∈ LPSL
d (u) if

and only if Query(u, v, LPSL
<d ) > d.

Proof Consider a node v with dist(u, v) = d. Denote by S
the set of nodes on the shortest paths from u to v and let w

be the highest ranked node in S. According to Theorem 1,
we have two exclusive cases:

– w = v if and only if v is the hub of u;
– w �= v means that

– w is the hub of both u and v, and
– dist(u, w), dist(w, v) < d,

and therefore, Query(u, v, LPSL
<d ) = d.

Therefore, if (v, dist(v, u)) /∈ LPSL
d (u), namely, v is not a hub

of u, then w �= v, and then Query(u, v, LPSL
<d ) = d. Besides,

if (v, dist(v, u)) ∈ LPSL
d (u), namely, v is a hub of u, v is the

highest ranked node in S and therefore, no other node in S
can be a hub of v, that is, Query(u, v, LPSL

<d ) > d. ��
By transforming the order dependency to distance depen-

dency, it is possible to complete the index construction in D
rounds where D denotes the diameter of the graph.

Example 7 In Table 1, each row corresponds to the partial
label of a node, while each column corresponds to the incre-
mental labels regarding each distance value. When d = 0,
each node add to itself since the distance between itself is
zero. When d = 1, we either add nodes that are 1-hop away
to a node u or prune the 1-hop away nodes. Note that accord-
ing to Lemma 4, only higher ranking nodes can be hubs of
lower ranking nodes. When d = 2, we either add nodes that
are 2-hop away to a node u or prune the 2-hop away nodes.
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For instance, if u = v11, the node v1 that is 2-hop away is
added into LPSL

2 (v11). But node v8 is pruned since we can
make use of v5, which is less than two hops away with v8, to
prune it.

3.4 The parallelized labelingmethod

To apply Theorem 3 to generate LPSL
d (u), all the node pairs

with distance equal to d are to be examined which is also
expensive. This section provides a practical algorithm, par-
allel shortest-distance labeling (PSL), to construct the index
LPSL in label propagations.
Propagation-Based Label Construction. This section pro-
vides a positive answer to the following question: can we
build the distance specific label LPSL

d (u) by gathering the
labels of its neighbors, namely, LPSL

d−1(v), for v ∈ N (u)? We
formally show that

⋃
v∈N (u) L

PSL
d−1(v) is sufficient to create

LPSL
d (u) in Lemma 8.

Lemma 8 All the hub nodes of labels in LPSL
d (u) appear in

labels
⋃

v∈N (u) L
PSL
d−1(v) as hub nodes.

Proof We show that if a node is not a hub of any node v ∈
N (u) in LPSL

d−1(v), then it is not a hub of u in LPSL
d (u). Let

w �= u be a hub of u in LPSL
d (u) but is not a hub of any

node v ∈ N (u) in LPSL
d−1(v). Note that the PLL was built

in a BFS search. Consider the round when the pruned BFS
search is sourced from w. Since w �= u and w is a hub of u,
there is a shortest path from w to u such that w is a hub of
all nodes on the path. Let s be the predecessor of u on the
shortest path. s ∈ N (v) and (w, dist(w, s)) ∈ LPLL. Since
dist(w, s) = d − 1, w is a hub of LPSL

d−1(s), contradiction. ��
Pruning Conditions. From Lemma 8, we can construct
LPSL(u) in an iterative way and the initial condition is given
in Lemma 5 by inserting u to the label LPSL

0 (u) as its own hub.
However, pouring all nodes in

⋃
v∈N (u) L

PSL
d−1(v) directly into

LPSL
d (u) produces a large set of candidate labels. Therefore,

we propose two rules to prune unnecessary label entries.

Lemma 9 A hub w in the label set
⋃

v∈N (u) L
PSL
d−1(v) is not a

hub of u if r(w) < r(u).

Proof Lemma 4. ��
Lemma 10 A hub w in the label set

⋃
v∈N (u) L

PSL
d−1(v) is not

a hub of u in LPSL
d (v) if Query(w, u, LPSL

<d ) ≤ d.

Proof If Query(w, u, LPSL
<d ) < d, then dist(w, u) < d,

w is not a hub of u with distance dist(w, u) = d. If
Query(w, u, LPSL

<d ) = d, we discuss in two cases.

– dist(w, u) < d, w is not a hub of u with distance d.
– dist(w, u) = d, there is a node z on the shortest path

between w and u with r(z) > r(w). According to Theo-
rem 1, w is not be a hub of u in LPLL.

Therefore, w is not a hub of u if Query(w, u, LPSL
<d ) ≤ d. ��

Based on the above pruning rules, we propose our label
propagation function to find the exact LPSL

d (u), ∀u ∈ V .
Denote byCd(v) the set of hub nodes in label set LPSL

d (v),
for ∀v ∈ V and d ∈ [1, D + 1].
Theorem 4 (Label Propagation Function)

LPSL
d (u) =

⋃

w∈Cd−1(v), for ∀v∈N (u)

LPSL
d (u, w) (1)

where LPSL
d (u, w) =

{∅, if r(w) < r(u) or Query(w, u, LPSL
<d ) ≤ d;

{(w, dist(w, u))}, otherwise.
(2)

Proof Denote by L ′ the label set computed from Equa-
tion (1).We show that L ′ = LPSL

d (u) in two directions. Due to
the correctness of Lemma 8 and the pruning conditions, the
label set LPSL

d (u) ⊆ L ′. The followparts prove L ′ ⊆ LPSL
d (u).

Let (w, dist(w, u)) be a label in L ′. Equation (2) shows that
r(w) > r(u) and Query(w, u, LPSL

<d ) > d.
If in LPLL, w is not a hub of u, then according to Theo-

rem 1, there is a node s that in S—the set of all nodes in the
shortest path between w and u—with r(s) > r(w) > r(u).
Therefore, dist(w, s), dist(s, u) < d and dist(w, u) ≤ d,
and thus, Query(w, u, LPSL

<d ) ≤ d, contradiction.
Therefore,w is a hub of u in LPLL. Besides, if dist(w, u) <

d, Query(w, u, LPSL
<d ) = dist(w, u) < d, contradiction.

Thus, dist(w, u) = d. Now we have proved that w is a hub
of u in LPLL with dist(w, u) = d, i.e., w is a hub of u in
LPSL
d (u) which completes the proof. ��

The PSL Algorithm. Algorithm 2 puts all parts of PSL
together. LPSL

0 (u) is obtained by add u to itself (Line 1).
Then, for each edge, the higher ranked node v is added into
lower ranked node u to form LPSL

1 (u) according to Lemma 6
(Lines 2–4). If LPSL

d−1 is empty—the path with length d − 1 is
covered by LPSL

<d−1—we find the final index (Line 6). Other-
wise, nodes are parallelly processed to build LPSL

d for d > 1
(Lines 7–12): each node u first finds its superset cand(u)

(Lemma 8) (Line 8) and then, pruning conditions 9–10 apply
(Lines 10–11). Entry (w, dist(w, u)) is then added to LPSL

d (u)

(Lines 11–12).

Example 8 In Fig. 2a, each node u ∈ V is added to LPSL
0 (u)

for d = 0. In Fig. 2b, for each edge (u, v), v is added
to LPSL

1 (u) if r(v) > r(u). For instance, LPSL
1 (v3) =

{(v1, 1), (v2, 1)}, LPSL
1 (v2) = {(v1, 1)}, LPSL

1 (v7) = {(v2, 1),
(v3, 1), (v6, 1)}, In Fig. 2c, for each node u, hubs in
{LPSL

1 (w)|w ∈ N (u)} are candidate hubs and then added
to LPSL

2 (u) if the pass pruning conditions. v6 has three neigh-
bors v2, v3, v7. Then, candidate nodes are {v1, v2, v3, v6, v7}.
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(a) (b) (c)

Fig. 2 The execution of PSL from d = 0, d = 1 to d = 2

Algorithm 2: PSL
Input: Graph G(V , E)

Output: The index LPSL

1 Insert (u, 0) into LPSL
0 (u), ∀u ∈ V ;

2 for (u, v) ∈ E do
3 if r(u) > r(v) then Insert (u, 1) into LPSL

1 (v);
4 else Insert (v, 1) into LPSL

1 (u);

5 d ← 2;
6 while LPSL

d−1 is not empty do
7 for u ∈ V in parallel do
8 cand(u) ← hubs in LPSL

d−1(v), ∀v ∈ N (u);
9 for each node w ∈ cand(u) do

// Pruning Condition Lemma 9
10 if r(w) < r(u) then continue;

// Pruning Condition Lemma 10

11 if Query(w, u, LPSL
<d ) ≤ d then continue;

12 Insert (w, d) into LPSL
d (u);

13 d ← d + 1;

14 return LPSL;

(v1, 2) will be put into LPSL
2 (v6) since the current index

gives the answer ∞ and r(v1) > r(v6). {v2, v3, v6} will be
pruned by the current index while v7 will be pruned since
r(v7) < r(v6). Therefore, LPSL

2 (v6) = {(v1, 2)}.

Theorem 5 The time complexity of PSL under one core envi-
ronment is O(δ2 · m).

Proof Let LPSL = LPSL
<D+1 = LPLL. For each label in LPSL(v),

it has been collected by each of v’s neighbors once as can-
didates (Line 11). For each candidate, a query (Line 15) is
called in O(δ) time. The total cost is �v∈V δd(v) × δ =
O(δ2m). ��

4 Index size reduction

Parallel index construction reduces the index timewhile leav-
ing the index size LPSL = LPLL unchanged. This section
improves the scalability of the PSL by reducing the index
size. Section 4.1 reduces the graph size using the equivalence

relationships among nodes. Section 4.2 optimizes the index
size of PSL based on an observation on the label distribution.

4.1 Equivalence relation reduction

We consider the equivalence of two nodes u and v based on
their neighbors. Depending onwhether u and v have an edge,
we define two types of equivalence relations.

Definition 9 (Node Equivalence Relations) For u, v ∈ V ,

– u �1 v if N (u) = N (v);
– u �2 v if N (u) ∪ {u} = N (v) ∪ {v}.

It can be verified that �1 and �2 are equivalence relations.
Their reflexive, symmetric and transitive properties are inher-
ited from the equality operator over node sets.

Since u /∈ N (u), u �1 v requires that u and v have no
edge while u �2 v requires that u and v must have an edge.

Each equivalence relation partitions V into disjoint equiv-
alent classes: the equivalent class of a node v includes all the
nodes that are equivalent to v. We say an equivalent class
is non-trivial if it includes at least two nodes. Definition 10
obtains nodes in non-trivial equivalent classes under the two
equivalence relations and Lemma 11 shows that these non-
trivial equivalent classes are disjoint.

Definition 10 Define three vertex sets V1, V2 and V3 with

– V1 = {u ∈ V |there exists v �= u such that u �1 v}
– V2 = {u ∈ V |there exists v �= u such that u �2 v}
– V3 = V \V1\V2.

Example 9 In Fig. 3, V1 = {v11, v12} since N (v11) =
N (v12) = {v4, v5}; V2 = {v6, v7} since {N (v6) ∪ v6} =
{N (v7) ∪ v7} = {v2, v3, v6, v7}.
Lemma 11 V1,V2 and V3 is a partition of the graph G.

Proof Since V3 is the complement of V1∪V2, the three vertex
sets jointly cover V . It remains to prove that V1 ∩ V2 = ∅.
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Fig. 3 Equivalence relation reduction

Let u be a node u ∈ V1 ∩ V2. According to the definition,
there exist two nodes v �= u andw �= u such that u �1 v and
u �2 w. In other words, N (u) = N (v) and N (u) ∪ {u} =
N (w) ∪ {w}. Since v has no edge to u while w has an edge
to u, v �= w. Thus, w ∈ N (u) = N (v), namely, there is an
edge between w and v. Since v ∈ N (w)\{u} ⊆ N (u), u and
v have an edge, contradiction. Therefore, V1 ∩ V2 = ∅. ��

According to Lemma 11, each node belongs to at most
one non-trivial equivalence class constructed under the two
equivalence relations. Therefore, we define the mapping
function f that maps a node to the node with the smallest
node ID in the corresponding non-trivial equivalent class.

Definition 11

f (u) =
⎧
⎨

⎩

min{v|v �1 u}, i f u ∈ V1;
min{v|v �2 u}, i f u ∈ V2;
u, if u ∈ V3;

(3)

Example 10 In Fig. 3, f (v11) = f (v12) = v11; f (v6) =
f (v7) = v6; f (u) = u, for u ∈ V3.

Graph Reduction. We compress the graph by eliminating
all the nodes u in V1 and V2 and their incident edges unless
f (u) = u. This operation transforms G to its subgraph Gs .

Example 11 In Fig. 3, f (v7) �= v7, we delete v7. Similarly,
f (v12) �= v12, we delete v12. Nodes u with f (u) = u are
kept.

Lemma 12 For any two nodes s, t with f (s) �= f (t),
distG(s, t) = distGs ( f (s), f (t)).

Proof Let p(s, t) = {v1, v2, . . . , vk} be a shortest path on G
from s to t and let ps(s, t) = { f (v1), f (v2), · · · , f (vk)}.

This paragraph proves that for any nodes x and y on p
with x �= y, f (x) �= f (y). We first show that for all v �= t

on p, f (v) �= f (t): if otherwise the predecessor pre(v) of v

on the path p—pre(v) exists since f (s) �= f (t)—can link
to t directly and then reduces the path length, contradiction.
Therefore, any node v with f (v) �= f (t) has a successor
on p. Secondly, let u �= t be a node on p; denote by S the
equivalent class of u; let z be the last node in S on the path.
suc(z), the successor of z on the path exists since f (u) =
f (z) �= f (t) (from the first point). There is an edge from
u to suc(z) since (1) z has an edge to suc(z), (2) u, z ∈ S
and (3) suc(z) /∈ S. Thus, if suc(z) is not the successor of u,
then p is not a shortest path. Therefore, all nodes on p have
different f (·) values.

It is easy to verify that if f (u) �= f (v) and there is an edge
between u and v, then there is an edge between f (u) and
f (v). Thus, ps(s, t) is a path on Gs . Since GS is a subgraph
of G, distG(s, t) ≤ distGS (s, t) ≤ distG(s, t). ��
Example 12 Denote by F(V ′) = {v ∈ V ′|v = f (v)} the
remained nodes in a set under equivalence reduction. Table 2
shows the effectiveness of the equivalence relations on index
reduction. For YOUT (TPD), around 33.15% (17.67%) and
0.45% (0.67%) of nodes are eliminated by the first and the
second equivalence relation, respectively, and the index size
is reduced by 31.13% (16.16%).

Query Processing. With the compressed graph, the query
processing has to be adapted. We answer query q(s, t) in the
following four cases. (1) If s = t , return 0. (2) If f (s) = f (t)
under s �1 t then return 2. (3) If f (s) = f (t) under s �2 t ,
return 1. (4) Otherwise, return q( f (s), f (t)) in Gs .

4.2 Local minimum set elimination

The index reducing technique in this section is motivated by
an observation on the PLL label distribution.

For PLL with nodes ordered in node degrees, Fig. 4 shows
the label size distribution of two representative small-world
networks: YouTube (denoted by YOUT) is a social network
and UK-Tpd (denoted by TPD) is a web graph. The max-
imum degrees of YOUT and TPD are 91,751 and 63,731,
respectively. It can be observed that low-degree nodes have
significantly larger label sizes than the high degree nodes.
This observation motivates the elimination of node labels on
the nodes ranked lowest among its neighbors.

Definition 12 (LocalMinimumSet)Anode is localminimum
node if it has the lowest rank among its neighbors. Local

Table 2 Reduced index size
with equivalence relations

Number of reduced nodes Index space (MB)
Dataset |V | |V1\F(V1)| |V2\F(V2)| Before After

YOUT 3,223,590 1,068,666 14,405 2141.512 1474.86

TPD 1,766,010 312,166 11,912 1783.192 1495.05
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(a) (b)

Fig. 4 PLL: degree and label size

Fig. 5 Local minimum set

minimum set constitutes of local minimum nodes:

M(G) = {u ∈ V |for ∀v ∈ N (u), r(u) < r(v)}.

Example 13 In Fig. 5,M(G) = {v7, v10, v11, v12}. For exam-
ple, node v7 has the lowest rank among its neighbors.

An ideal property of a local minimum node v is that v is
referred to by no node other than v itself as a hub.

Lemma 13 For any node ∀v ∈ M(G) and any node ∀u ∈ V ,
v is a hub of u in LPSL if and only if v = u.

Proof According to Theorem 1, v is a hub of u if v is the
highest ranked node in S—the set of all nodes on the shortest
path from u to v. Unless u = v, for any shortest path from
u to v, there is a node w ∈ N (v) on the path. If v is a local
minimum node, r(v) < r(w) and v cannot be a hub of u. ��
Construct Labels for V \M(G). Lemma 13 shows that
removing nodes in M(G) does not affect the label set of any
node in V \M(G). However, in our propagation-based label
construction, LPSL

d (v) is built from LPSL
d−1(u), ∀u ∈ N (v). In

other words, for a node u ∈ N (v) ∩ M(G), without LPSL
d−1(u)

we cannot construct LPSL
d (u) using Theorem 4.

To tackle the above problem, the key finding is that nodes
in M(G) are independent. That is, there is no edge between
nodes inM(G). Thus, a node u with some of its neighbor from
M(G) can be saved by resorting to u’s two-hop neighbors via
nodes in M(G). These 2-hop neighbors will certainly fall in
V \M(G), and their labels are ready for use.

Definition 13 (Generalized Neighbors) Given a node v ∈
V \M(G), we define two neighbor sets. N 1(v) = N (v)\M(G)

Table 3 Reduced index size with local minimum set

Dataset Node number Index space (MB)
|V | |M(G)| Before After

YOUT 3,223,590 2,287,357 2141.512 1234.377

TPD 1,766,010 1,151,224 1783.192 989.567

includes the neighbors of v that fall in V \M(G) and N 2(v) =
{w|w ∈ (N (u)\{v}),∀u ∈ (N (v)∩M(G))} includes the two-
hop neighbors of v connected via nodes in M(G).

Example 14 In Fig. 5, since v9 ∈ V \M(G), N 1(v9) =
{v1, v8}, N 2(v9) = {v1, v2}.

We show that the generalized neighbors are not in M(G).

Lemma 14 Given a node v ∈ V \M(G), N 1(v) ∩ M(G) = ∅
and N 2(v) ∩ M(G) = ∅.
Proof N 1(v) ∩ M(G) = ∅ by Definition 13. Let x ∈ N 2(v)

be a node expanded from y ∈ N (v) ∩ M(G). If x ∈ M(G),
then r(y) < r(x) and r(x) < r(y), contradiction. ��
Example 15 In Fig. 5, N 2(v9) = {v1, v2}, which are all in
the set V \M(G).

We show a label propagation function on V \M(G) below.
For ∀v ∈ V and d ∈ [1, D + 1], denote, by Cd(v), the set

of hub nodes in label set LPSL
d (v).

Theorem 6 For each node u ∈ V \M(G)

LPSL
d (u) =

⋃

w∈Cd−1(v), for ∀v∈N1(u)

w∈Cd−2(v
′), for ∀v′∈N2(u)

LPSL
d (u, w), (4)

where LPSL
d (u, w) =

{∅, i f r(w) < r(u) or Query(w, u, LPSL
<d ) ≤ dist(w, u);

(w, dist(w, u)), otherwise.
(5)

Proof Let L ′′ be the labels drawn from Eq. (4). We reuse
the proof of Theorem 4 by showing that the hubs L ′
constructed in Eq. (1) is a subset of the hubs in L ′′. Accord-
ing to Lemma 8,

⋃
v′∈N2(u) Cd−2(v

′) is a super set of⋃
v∈N (v)∩M(G) Cd−1(v), besides, N (u) = N 1(u) ∪ (N (u) ∩

M(G)), thus
⋃

v∈N (u) Cd−1(v) ⊆ ⋃
v∈N1(u) Cd−1(v) ∪⋃

v′∈N2(u) Cd−2(v
′) which completes the proof. ��

Example 16 Table 3 shows the effectiveness on reducing the
index size using local minimum set. For YOUT (TPD), the
local minimum set eliminates about 70.95% (65.18%) nodes
and reduces the index size by 42.4% (44.5%).
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Table 4 Local minimum set: index and query time

Dataset Index time (s) Query time (s)
Before After Before After

YOUT 23.805 15.786 1.13E−06 1.71E−06

TPD 18.997 13.71 1.80E−06 3.71E−06

Query Processing. The reduced index provides the labels
for nodes in V \M(G). When it comes to query processing,
we can recover the labels of nodes inM(G) with the union of
the labels of neighbors. For a query q(s, t), without loss of
generality, if s ∈ M(G) and t ∈ V \M(G), we swap s and t .
To reduce the online cost, we use a hash join to produce the
2-hop distances. Let H be a table of size |V \M(G)| where
H(w) records the labeled distance in LPSL(s) with hub w.
H(w) = ∞ if w is not a hub of s. Since the label set LPSL(s)
may not be available, we construct H in two cases.

– If s ∈ V \M(G), we hash the labels in LPSL(s) by letting
H(v) = dist(s, v) for each hub v of s.

– Otherwise, we construct labels of s by visiting neighbors
w ∈ N (s) of s and update H(v) with dist(v,w) + 1 for
each hub v of w—H(v) only keeps the minimum value
along the updates.

After H being constructed, we generate labels of t in a
similar way and instead of updating the table H , we fetch
the value stored in the table H under the same hub node and
then compose a 2-hop distance.

Note that the hash table H can be maintained across dif-
ferent queries without initialization: we keep a dirty log and
recover H after processing each query.

Lemma 15 When s, t ∈ M(G), the time cost of distance query
is O(�a∈N (s)|LPSL(a)| + �b∈N (t)|LPSL(t)|).
Proof For s, we store nodes in {LPSL(a)|a ∈ N (s)} in H .
For t , we scan the nodes in {LPSL(b)|b ∈ N (t)} to gain the
distance. The linear scan takes O(|{LPSL(a)|a ∈ N (s)}| +
|{LPSL(b)|b ∈ N (s)}|) time in total. ��

Example 17 Table 4 shows the index time and query time in a
45-core environment. Local minimum set technique reduces,
for YOUT (TPD), the index time by 33.69% (27.83%) at a cost
of 1.5× (2.06×) query time. The trade-off is worthwhile
since the query time is still in micro-seconds.

5 Index optimization with
betweenness-based node order

The PSL proposed in Sect. 3 parallelizes PLL in a multi-core
environment, and themain bottleneck of this labelingmethod

is the unaffordable index size. The two index reduction tech-
niques proposed in Sect. 4 are built upon a node order which
is, by default, degree based. To further reduce the index
size, this section investigates the application of betweenness-
based node order in PSL. As suggested by [31] and veri-
fied by our preliminary experimentation (Exp-9, Sect. 7),
betweenness-based node order leads to a smaller index size.
The difficulty in applying the betweenness-centrality to PSL
is twofold. 1) The computation of the betweenness centrality
for all the nodes is computationally expensive (O(mn) [13])
for big graphs. 2) The best practice of cost-effectively opti-
mizing PSL with approximate betweenness is unknown. A
better estimation of k-betweenness leads to a smaller index
size; however, improving estimation precision can be exhaus-
tive. Section 5.1 first proposes a sampling-based approach for
estimating k-betweenness; to further improve the estimation
efficiency, Sect. 5.2 presents a pool-based sampling algo-
rithm. Section 5.3 introduces an algorithm in engaging the
betweenness estimation in PSL for index reduction.

5.1 Basic sampling

Exact k-betweenness of a node v ∈ V summarizes the partial
betweenness kbcs(v) over all source nodes s in V . How-
ever, only a small number of sources s contribute to the
computation of kbc(v): Lemma 3 shows that nodes s with
dist(s, v) = 0 or dist(s, v) ≥ k has kbcs(v) = 0. These
useless sources can be safely removed for v.

Definition 14 (k-Reachable Set) The k-reachable set of a ver-
tex v ∈ V is defined as R(v) = {s|0 < dist(s, v) < k}.
Example 18 To estimate kbc(v9) (with k = 2) in Fig. 1, we
only consider source nodes inR(v9) = {v1, v2, v3, v4, v5, v8,
v10} since nodes w outside R(v9) make the partial between-
ness kbcw(v9) zero.

Under the framework of betweenness approximation [7],
random samples need to be selected from R(v). Suppose we
randomly select some nodes S from R(v) for a node v. For
each sample s ∈ S, kbcs(v) can be computed by undertaking
a graph traversal from s [14]. We estimate kbc(v) with

k̃bc(v) =
(

∑

s∈S
kbcs(v)

)
· |R(v)|

|S| .

Lemma 16 shows that k̃bc(v) is an unbiased estimator of
kbc(v).

Lemma 16 E(˜kbc(v)) = kbc(v), for ∀v ∈ V .

Proof For ∀s ∈ R(v), we define a random variable Xs =
kbcs(v) · |R(v)|. We have E(Xs) = ∑

s∈R(v)
1

|R(v)| Xs =
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∑
s∈R(v)

1
|R(v)|kbcs(v) · |R(v)| = kbc(v). When aggre-

gating Xs over samples s in S, we have E(k̃bc(v)) =
E(

∑
s∈S kbcs(v) · |R(v)|

|S| ) = E(
∑

s∈S Xs · 1
|S| ) = E(Xs) =

kbc(v). ��
Lemma 17 Suppose K = maxs∈S(kbcs(v)),

P(|˜kbc(v) − kbc(v)| > ε) ≤ 2 exp

(
−2|S| · (

ε

K · |R(v)| )
2
)

.

Proof Let X1, X2, . . . , Xq be independent random vari-

ables with values in [a, b], and X = X1+X2+···+Xq
q , then

P(|E(X) − X | > ε) ≤ 2 exp (−2q · ( ε
b−a )2) by Hoeffd-

ing’s inequality [23]. For any s ∈ S, we define Xs =
kbcs(v) · |R(v)|, then E(Xs) = kbc(v), Xs = k̃bc(v),
q = |S|, a = 0, b = K · |R(v)|. Plugging these terms into
Hoeffding’s inequality proves the lemma. ��
Discussion. Given a node v ∈ V , by Lemma 17, for a given

ε ∈ R+ and δ ∈ (0, 1), if |S| ≥ ln( 2
δ
)·K 2·|R(v)|2
2ε2

, we obtain an
estimation of kbc(v) within an additive error ε with a proba-
bility at least δ [23]. The required sample size, unfortunately,
is very large. Although there are techniques to reduce the
sample size [11,37,38], there are two drawbacks of this basic
sampling approach: (i) each node v needs to compute |R(v)|
to reach an unbiased estimator k̃bc(v) of kbc(v); (ii) node
v precomputes R(v) to select samples. The cost of obtain-
ing R(v) (and |R(v)|) for ∀v ∈ V by performing n = |V |
BFS (with a length limited to k) is no better than the exact
k-betweenness computation.

5.2 Pool-based sampling

Size Estimation. To solve the first drawback of the above
sampling method, we select a pool Ssize of nodes to approx-
imate |R(v)| for all nodes v ∈ V . Specifically, for each node
s ∈ Ssize, we conduct a k-bounded BFS from s which only
visits nodes that are < k hops away from s. Suppose v has
been visited nsize(v) times by the k-boundedBFS from s (that
is, there are nsize(v) samples in Ssize that belong to R(v)), we
estimate |R(v)| with

R̃(v) = nsize(v) · n

|Ssize| .

Lemma 18 shows that R̃(v) is an unbiased estimator of |R(v)|.
Lemma 18 E (̃R(v)) = |R(v)|, for ∀v ∈ V .

Proof For each sample s ∈ Ssize, we define a random vari-
able Xs to indicate whether s is in R(v), that is, Xs ={
1, i f s ∈ R(v)

0, otherwise
. Then, P(Xs = 1) = |R(v)|

n and E(Xs) =
|R(v)|
n . Thus, E(nsize(v)) = ∑

s∈Ssize E(Xs) = |R(v)|
n · |Ssize|,

and E (̃R(v)) = |R(v)|. ��

Algorithm 3: Size Estimation
Input: Graph G(V , E), hop k, time budget Ts
Output: Ssize, nsize(v) for ∀v ∈ V

1 Ssize ← ∅;
2 nsize(v) ← 0, for ∀v ∈ V ;
3 for sampling time ≤ Ts do
4 s ← a node chosen uniformly at random from V ;
5 Ssize ← Ssize ∪ {s};
6 Let σs,s ← 1 and dist(s) ← 0;
7 For ∀v ∈ V \{s}, let σs,v ← 0 and dist(v) ← −1;
8 curr ← {s}; next ← ∅;
9 for i = 0, 1, · · · , k − 2 do

10 for ∀v ∈ curr and ∀w ∈ N (v) do
11 if dist(w) = −1 then
12 dist(w) ← dist(v) + 1;
13 nsize(w) ← nsize(w) + 1;
14 next ← next ∪ {w};
15 curr ← next , next ← ∅;
16 return Ssize, nsize(v) for ∀v ∈ V ;

Algorithm 3 estimates, for ∀v ∈ V , the size nsize(v) of
R(v), within the sampling time budget Ts . For a random sam-
ple s (Line 4), we append s in Ssize (Line 5) and perform a
k-bounded BFS from s (Lines 6–15). For each newly visited
node v (i.e., s ∈ R(v)), nsize(v) is increased by 1 (Line 13).
The process continues until the sampling time goes beyond
the budget Ts (Line 3).
Partial Betweenness Estimation.To solve the second draw-
back of the basic sampling approach, we select a pool of
nodes Sbc to compute k-partial betweenness for all nodes
v ∈ V . Among the samples in Sbc, suppose nbc(v) nodes
(denoted as Sv) are included in R(v) for a certain v, we sum-
marize the partial k-betweenness of v over Sv to obtain κ(v),
for each individual node v ∈ V ; κ(v) shall be used to estimate
kbc(v).

κ(v) =
∑

s∈Sv

kbcs(v).

In this way, we avoid sampling from R(v) for each node in
V .

Algorithm 4 estimate κ(v) and nbc(v), for ∀v ∈ V
(Lines 1–27) within time budget Ts . We repeatedly select
a sample s (Line 3) uniformly at random, until the time bud-
get Ts is consumed (Line 2). Given s, we follow the method
introduced in [14] to compute kbcs(v), for ∀v ∈ V . Note
that in this process, kbcs(v) is added to κ(v), and nbc(v) is
increased by 1.

We first conduct a k-bounded BFS from s (Lines 1–18),
aiming at computing σs,v , the number of shortest paths from
s to v, for ∀v ∈ R(s) (equivalently s ∈ R(v)). Specifically,
we use curr and next to store nodes expanded in the current
round and the nodes to expand in the next round. σs,v is
initialized with zero for all v ∈ V , except for s, whose σs,s
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is set to 1; dist(v) is initialized to −1 for all v, except for
s, which is set to 0 (Lines 6–7). We first insert s into curr
to start the BFS (Line 8), and then we explore nodes within
distance k to s (Line 9): for each node v ∈ curr (Line 10),
we check v’s neighbor w (Line 11). If w is not visited before
(Line 12), dist(w) is updated to dist(v) + 1 (Line 13), and
w is appended to next and S (Lines 14–15). If w is one hop
farther than v regarding s, we increase σs,w by adding σs,v
to it (Lines 16–17). Then, next is assigned to curr for the
next round (Line 18).

When all nodes within distance k to s have been stored in
stack S, we perform a backward BFS to compute kbcs(v),
for ∀v ∈ V (Lines 19–27). Specifically, kbcs(v) is initialized
as zero (Line 19), and we visit nodes w in S reversely—in
the order of non-increasing distance to s (Line 21). For each
neighbor v of w, if v is one hop closer than w regarding s,
kbcs(w) is used to update kbcs(v) (Lines 22–24). For each
v �= s, kbcs(v) is added to κ(v), and nbc(v) is increased by
1 (Lines 26–27).

Algorithm 4: Partial Betweenness Estimation
Input: Graph G(V , E), hop k, time budget Ts
Output: nbc(v), κ(v) for ∀v ∈ V

1 nbc(v) ← 0, κ(v) ← 0, for ∀v ∈ V ;
2 while sampling time ≤ Ts do
3 s ← a random node in V ;

// Forward BFS
4 curr ← ∅, next ← ∅;
5 S ← an empty stack;
6 For ∀v ∈ V \{s}, σs,v ← 0, dist(v) ← −1;
7 σs,s ← 1, dist(s) ← 0;
8 curr ← curr ∪ {s};
9 for i = 0, 1, · · · , k − 1 do

10 for ∀v ∈ curr do
11 for ∀w ∈ N (v) do
12 if dist(w) = −1 then
13 dist(w) ← dist(v) + 1;
14 next ← next ∪ {w};
15 S ← S ∪ {w};
16 if dist(w) = dist(v) + 1 then
17 σs,w ← σs,w + σs,v ;

18 curr ← next , next ← ∅;
// Backward BFS

19 kbcs(v) ← 0, ∀v ∈ V ;
20 while S �= ∅ do
21 w ← pop from S;
22 for v ∈ N (w) do
23 if dist(w) �= dist(v) + 1 then continue;
24 kbcs(v) ← kbcs(v) + σs,v

σs,w
· (1 + kbcs(w));

25 if v �= s then
26 κ(v) ← κ(v) + kbcs(v);
27 nbc(v) ← nbc(v) + 1;

28 return nbc(v), κ(v) for ∀v ∈ V ;

Algorithm 5: Order Generation
Input: Graph G(V , E), hop k, time budget T , θ
Output: r(v) for ∀v ∈ V

1 Ssize, nsize(v) ← Algorithm 3(G, k, θT ), for ∀v ∈ V ;
2 nbc(v), κ(v) ← Algorithm 4(G, k, (1 − θ)T ), for ∀v ∈ V ;

3 k̃bc(v) ← κ(v)
nbc(v)

· (nsize(v) · n
|Ssize| ), for ∀v ∈ V ;

4 Generate r(v) in non-increasing order of k̃bc(v);
5 return r(v) for ∀v ∈ V ;

To analyze the estimation accuracy of the pool-based sam-
pling, we focus on Sv = {v ∈ Sbc|v ∈ R(v)} and its size
nbc(v) = |Sv|, for each v ∈ V . We show that for each v, the
size nbc(v) is proportional to |R(v)|.
Lemma 19 E(nbc(v)) = |Sbc| × |R(v)|

n .

Proof For a node that is chosen uniformly at random from
V , it falls in R(v) with probability |R(v)|

n . Aggregating this
probability over all nodes in Sbc derives the expectation
E(nbc(v)) = |Sbc| × |R(v)|

n . ��
Order Generation. With the outputs of size estimation and
partial betweenness estimation, we show that

k̃bc(v) = κ(v)

nbc(v)
· (nsize(v) · n

|Ssize| ) (6)

is an unbiased estimator of kbc(v).

Lemma 20 E(˜kbc(v)) = kbc(v), for ∀v ∈ V .

Proof Given a node v ∈ V , we define a random variable
Xs = kbcs(v) · nsize(v) · n

|Ssize| , for ∀s ∈ R(v). Then,

E(Xs) = 1
|R(v)| · ∑

s∈R(v) kbcs(v) · E(nsize(v) · n
|Ssize| ) =∑

s∈R(v) kbcs(v) = kbc(v) (size estimation and betweenness
estimation are independent). Suppose samples Sbc are used to
estimate the betweenness, among which nodes Sv ⊆ Sbc are
included inR(v). The size of Sv isnbc(v). Then, E(k̃bc(v)) =
E(

∑
s∈Sv

kbcs(v) · nsize(v)
nbc(v)

· n
|Ssize| ) = E(

∑
s∈Sv

Xs · 1
nbc(v)

) =
E(Xs) = kbc(v). ��

By applying Lemma 17, the accuracy is given below.

Lemma 21 Suppose K = maxs∈Sv (kbcs(v)),

P(|˜kbc(v) − kbc(v)| > ε) ≤ 2 exp (−2nbc(v) · (
ε

K · |R(v)| )
2).

With the estimation k̃bc(v) of kbc(v) computed for each
node v ∈ V , the betweenness-based node order r is set such
that for any u, v ∈ V , r(u) > r(v) if
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– k̃bc(u) > k̃bc(v);
– k̃bc(u) = k̃bc(v), ID(u) > ID(v).

Algorithm 5 shows the order generation algorithm. First,
Algorithm3 (with sampling timebudget θT ) andAlgorithm4
(with sampling time budget (1− θ)T ) are called to estimate
size and partial betweenness of each node (Lines 1–2). Then,
k̃bc(v) is computed based on Eq. (6) (Line 3). Finally, r(v)

is determined by the above rule (Line 4). The parameter θ

controls the time used in Algorithm 3 and Algorithm 4. In
practice, we set the parameter θ as 0.2 since it leads to a good
effect when k-betweenness is used for ordering nodes.

Lemma 22 The time cost of Algorithm 5 is O(|S|(n + m))

where |S| is the number of samples used in stage 1 and stage
2.

Remarks. In Algorithm 5, instead of giving a pre-defined
sample size, the sample size is controlled adaptively by the
sampling time—the estimation accuracywill improve ifmore
time is given.

5.3 Improved betweenness-based node order

Recall that the index reduction techniques proposed in Sect. 4
remove the local minimum set M(G) which, in the current
node order, is determined by the k-betweenness of nodes in
V . The remaining nodes V \M(G), however, may have differ-
ent k-betweenness in the updated graph structure. Therefore,
it is desirable to recompute k-betweenness for V \M(G) once
M(G) is eliminated for a better approximation.
Virtual Graph.To recompute k-betweenness, one challenge
is that if two nodes u, v ∈ V \M(G) are connected only by
nodes inM(G), then u and v are disconnected in the updated
graph. To this end, given a graphG(V , E), we define a virtual
graph G(V , E) with V = V \M(G) as its node set. Recall
Definition 13, we add two types of edges to E for each node
u ∈ V , (u, v) with l(u, v) = 1 for every v ∈ N 1(v) and
(u, v) with5 l(u, v) = 2 for every v ∈ N 2(v)\N 1(v). The
edge set is sufficient to keep the connectivity: due to the
property of the local minimum reduction, if u ∈ M(G) for
some node u ∈ V , then N (v) ∩ M(G) = ∅; therefore, to
retain the connectivity, we only need to consider u, v ∈ V
that are connected only by one node in M(G).

Example 19 In Fig. 5, since v8 ∈ N 1(v9), we have the edge
(v9, v8) with weight 1 in G; since v2 ∈ N 2(v9)\N 1(v9), we
have the edge (v9, v2) with weight 2 in G.

5 For the convenience of presentation, we replace an edge (u, v) of
length 2 with two unit-weighted edges (u, w), (w, v) with a new node
w interpolated in between.

Algorithm 6: Improved Order Generation
Input: Graph G(V , E), hop k, sample time T , θ
Output: r(v), for ∀v ∈ V

1 k̃bc(v), ∀v ∈ V ← Algorithm 5(G, k, (1 − 2θ)T );
2 M(G) ← ∅;
3 for v ∈ V do
4 for w ∈ N (v) do
5 if k̃bc(v) > k̃bc(w) then continue;

6 M(G) ← M(G) ∪ {v};
7 V ← V \M(G);
8 E ← {(u, v)|u, v ∈ V \M(G)};
9 for v ∈ V do

10 N 1(v) ← ∅, N 2(v) ← ∅;
11 for w ∈ N (v) ∩ V do insert w → N 1(v);
12 for w ∈ N (v) ∩ M(G) do
13 for u ∈ N (w) do
14 if u �= v then
15 Insert u → N 2(v);

16 for w ∈ N 1(v) do
17 Insert edge (v,w) with weight 1 in E ;

18 for w ∈ N 2(v)\N 1(v) do
19 Insert edge (v,w) with weight 2 in E ;

20 For ∀v ∈ V , Ssize, nsize(v) ← Algorithm 3(G(V , E), k, θT );
21 For ∀v ∈ V , κ(v), nbc(v) ← Algorithm 4(G(V , E), k, θT );

22 k̃bc(v) ← κ(v)
nbc(v)

· (nsize(v) · n
|Ssize| ), for ∀v ∈ V ;

23 Sort r(v) in non-increasing order of k̃bc(v), for ∀v ∈ V ;
24 Set r(v) as the minimum among its neighbors, for ∀v ∈ {V \V } ;
25 return r(v), for ∀v ∈ V ;

Improved Order Generation. The sampling algorithm
considering local minimum setM(G) elimination is in Algo-
rithm 6. Similar to Algorithm 5, we set θ to 0.2 in practice.
First, Algorithm 5 is invoked to compute k̃bc(v), ∀v ∈ V
(Line 1), and nodes v with the minimum k̃bc(v) among
N (v) constitute M(G) (Lines 2–6). Then, for each node
v ∈ V = V \M(G), N 1(v) and N 2(v) are formed accord-
ing to Definition 13 (Lines 8–15), where edges E are formed
in Lines 8 and 16–19.

Afterward, Algorithm 3 approximates the size of R(v) in
G, for ∀v ∈ V ; Algorithm 4 obtains k-partial betweenness
k̃bc(v) in G, for ∀v ∈ V . The k-betweenness of v ∈ V in G
is then computed by the outputs of the above two algorithms
(Line 22). For nodes in V , their orders are defined by k̃bc(v)

in G (Line 24), while we enforce nodes in V \V to have the
minimum orders—these nodes remain to be local minimum
set after the re-computing (Line 25).

6 Related work

Indexing shortest distances for fast online query processing
has been extensively studied. A recent experimental compar-
ison on distance labeling algorithms can be found in [31].
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Distance Labeling on Small-world Networks. To index
shortest distances for small-world networks, existing solu-
tions either build a partial index to assist the online search
algorithms [5,20,22] or build a complete index to fully sup-
port the distance query [4,26]. The solutions in the latter
category require a larger index but will obtain much faster
query processing time.

In the first category, Is-label approach first determines the
vertex hierarchy through the independent set and then cre-
ates the label for each node by this hierarchy structure [20].
Tree decomposition is used in [5] to discover the core-fringe
structure of social networks, and then index is created on
these two separate parts. Shortest path trees of high-degree
nodes are used [22] as index to guide the online searching to
process the distance query.

In the second category, PLL [4] constructs the index by
performing pruned BFS whose detail is given in Sect. 2.3.
The hop doubling approach in [26] applies generation rules
to join the short paths to long paths, until the whole paths are
covered. Compared to PLL, the algorithm proposed in [26]
uses less memory but will spend much more index time.
Distance Labeling on Road Networks. For distance index-
ing approaches on road networks, the approach in [2]
constructs the index by eliminating the high ranking nodes
and add it to the labels of its neighbors. The approach pro-
posed by Wei [46] first decomposes the graph into a tree as
the index, and then the distance of two nodes is answered
through this index using dynamic programming. The pruned
highway labeling approach proposed by Akiba et al. [3]
decomposes the road network into disjoint paths and the label
of a node include the distance to some nodes of the paths. A
hierarchical hop-based index is proposed in [33] to answer
shortest-distance queries in a road network with bounded
query processing time and index size. More details about the
distance query on road networks can be found in [31,47].
Approximate Distance Labeling. For approximate distance
labeling algorithms, the basic idea is to select nodes as land-
marks and then precompute the distances from the landmarks
to all the other nodes. The distance between any node pair
can be estimated using triangle inequality [15,35]. Online
processing on landmarks is used to improve the precision
[36,44].However, on small-world networks, the relative error
becomes significant since the distances are bounded by the
small diameter.
Betweenness Computation. Betweenness was proposed by
Freeman [19]. The best exact computation algorithm incurs
O(nm) [13], which has been confirmed to be almost opti-
mal for both sparse [10] and dense graphs [1]. Due to the
complexity, numerous approximation algorithms are given
to trade accuracy for speed. Pioneering work was done in
[24] by using a sampling-based approach, and subsequent
studies aimed at reducing the sampling costs [11,37,38]. For
example, Matteo et al. [37] applied VC-dimension theory

to calculate the sample size required to achieve the desired
approximation. The computed sample size is independent
of the number of vertices but depends only on the graph
diameter (i.e., the longest shortest path in the graph). To elim-
inate the dependence on the graph diameter and to further
reduce the required sample size, Matteo et al. [38] used the
concepts of Rademacher averages and pseudodimension to
accelerate the betweenness approximation. An experimental
comparison of approximate algorithms is presented in the lit-
erature [6] to validate the efficiency and accuracy of various
methods. Another line of direction investigates variations of
betweenness to reduce the computation costs [14,18,34]. k-
betweenness used in this paper belongs to this category [14],
and we devise approximation algorithms to compute it fast.

k-betweenness is an approximate notion of betweenness:
when k reaches the graph diameter (the length of the longest
shortest path in the graph), k-betweenness becomes between-
ness.We use k-betweenness to holistically optimize the node
order given the time resource in computing the node order.An
adequate k strikes a balance between (i) the gap between the
k-betweenness and betweenness and (ii) the gap introduced
by the sampling-based estimation of the k-betweenness—a
larger k reduces the first gap while increases the second gap.
In this paper, k is carefully chosen to holistically optimize the
node order. As a type of centrality measures, k-betweenness
can be used to identify important nodes in networks, such as
biological networks [25], virus propagation networks [32],
terrorist networks [16], and transportation networks [21]. The
approximation algorithms proposed in the paper can produce
elegant estimation in a given sampling time budget and thus
be beneficial for the tasks on the above networks.
Extensions from [30]. This work is an extension of the
conference version [30]. Compared to [30], we make the
following novel contributions. (1) In Sect. 2.3, the bene-
fits (index reduction) and challenges (quadratic computation)
of using betweenness-based node order in distance labeling
are discussed. (2) In Sect. 2.4, betweenness-related concepts
are introduced, including betweenness and its variation k-
betweenness. (3) In Sect. 5, approximation algorithms for
k-betweenness computation andhow tousebetweenness esti-
mation in the index construction process are presented. (4) In
Sect. 7, corresponding experiments are conducted to verify
the effectiveness of distance labeling using betweenness-
based node order.

7 Experimental results

In this section, we first validate the effects of parallelism
and compression techniques in Sect. 7.1, followed by the
evaluation of k-betweenness as a node order in Sect. 7.2.

All algorithms used in the experiments were implemented
in C++ and compiled with GNU GCC 4.8.5 and -O3 level
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Table 5 The description of the
datasets

Name Dataset n m Type

DELI Delicious6 536,109 1,365,961 Social Network

GP GPlus6 211,188 1,506,896 Social Network

LAST Lastfm6 1,191,806 4,519,330 Social Network

GOOG Google7 875,713 5,105,039 Web Graph

AMAZ Amazon8 735,323 5,158,388 Social Network

DIGG Digg6 770,800 5,907,132 Social Network

FLIX Flixster9 2,523,386 7,918,801 Social Network

TREC Trec9 1,601,787 8,063,026 Web Graph

YOUT YouTube9 3,223,589 9,375,374 Social Network

SKIT Skitter9 1,696,415 11,095,298 Internet Topology

TWIT Twitter7 456,631 14,855,875 Social Network

HUDO Hudong6 1,984,485 14,869,484 Web Graph

PET Petster9 623,766 15,699,276 Social Network

BAID Baidu6 2,141,301 17,794,839 Web Graph

TPD UK-Tpd8 1,766,010 18,244,650 Web Graph

DBLP DBLP9 1,314,050 18,986,618 Coauthorship

TOPC Topcats7 1,791,489 28,511,807 Web Graph

POK Pokec7 1,632,803 30,622,564 Social Network

FLIC Flickr9 2,302,925 33,140,017 Social Network

HOST UK-Host8 4,769,354 50,829,923 Web Graph

STAC Stack7 6,024,271 63,497,050 Interaction

LJ Ljournal8 5,363,260 79,023,142 Social Network

FB Facebook6 58,790,783 92,208,195 Social Network

INDO Indochina8 7,414,866 194,109,311 Web Graph

SINA Sina6 58,655,850 261,321,071 Social Network

WIKI Wiki9 12,150,976 378,142,420 Web Graph

ARAB Arabic8 22,744,080 639,999,458 Web Graph

IT IT-20048 41,291,594 1,150,725,436 Web Graph

SK SK-20058 50,636,154 1,949,412,601 Web Graph

UK UK-20068 77,741,046 2,965,197,340 Web Graph

optimization. All experiments were conducted on a machine
with 48 CPU cores and 384 GBmain memory running Linux
(Red Hat Linux 4.8.5, 64 bit). Each CPU core is Intel Xeon
2.1GHz. The parallelized programs are supported by the
OpenMP framework. We set the cut-off time as 24 hours.

7.1 Test of parallelism and compression

Algorithms. We compare our proposed algorithms against
the state-of-the-art algorithm PLL [4]. Our techniques include
the following three methods:

– PSL: the parallelized distance labeling technique intro-
duced in Sect. 3.

– PSL+: PSLwith the equivalence relation elimination tech-
nique as introduced in Sect. 4.1.

– PSL∗: PSLwith the equivalence relation elimination tech-
nique plus the local minimal set elimination technique as
introduced in Sect. 4.2.

Datasets. We conducted experiments on 30 real-world
graphs whose properties are shown in Table 5. The largest
graph has more than 2.9 billion edges. The datasets are
from various types of small-world networks including social
networks, web graphs, Internet topology graphs, coauthor-
ship graphs, and interaction networks. All graphs were
downloaded fromNetwork Repository6 [39], Stanford Large

6 http://networkrepository.com/index.php.
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NetworkDataset Collection7 [28], Laboratory forWebAlgo-
rithms8 [8,9], and the Koblenz Network Collection9 [27].
Exp 1: Index Time on a Single Core.We compare the index
time of PLL with PSL, PSL+ and PSL∗ on a single core. Note
that the bit-parallel technique introduced in [4] is used for
all methods since it is a separate optimization which can be
plugged into all distance labeling methods.

Figure 6 shows that PSL has an index time comparable to
PLL, while PSL+ and PSL∗ reduce the index time of PLL—
a by-product of the index reduction. For example, on the
dataset ARAB, PSL+ and PSL∗ successfully constructed the
index while PLL and PSL failed.
Exp 2: Index Time on Multiple Cores. Fig. 7 shows the
index time of PSL, PSL+ and PSL∗ on 45 cores. Compared to
the single-core results shown in Fig. 6, all the three methods
have a significant speedup. This speedup allows PSL to index
multiplemassive graphs, e.g., LJ,ARAB and SK, that cannot be
indexed on a single core. PSL∗ succeeded in indexing all the
graphswhile bothPSL andPSL+ failed on FB andUK—thanks
to the index reduction. The results show that the parallelism
together with the index reduction techniques scales up the
distance labeling to handle larger graphs.
Exp 3: Index Size. Figure 8 shows the index size of PLL,
PSL, PSL+, and PSL∗. The label size of PLL and PSL is the
same, which conforms to the analysis in Sect. 3.3. Both index
reduction techniques are effective. PSL+ reduces the index
size ofPSL on SK bymore than 50%.Moreover, onlyPSL∗ can
index massive graphs such as UK while the other approaches
ran out of memory. This verified the effectiveness of our
index reduction approaches.
Exp 4: Query Time.We compare the average query time of
PSL, PSL+ and PSL∗ on 106 random queries. Figure 9 shows
that PSL+ and PSL∗ have a query time comparable to PSL.
For PSL+, the additional query cost on checking equivalence
relations is negligible. Since Gs is smaller than G, the query
time of PSL+ is sometimes smaller than PSL. For example,
the query time of PSL+ onDELI is 1.17E−6 s while the query
time of PSL is 1.31E−6 s. For PSL∗, although the labels of
nodes in M(G) need to be constructed on-the-fly, the query
time of PSL∗ is within twice the query time of PSL on average,
remaining in micro-second level.
Exp 5: Indexing Speedup onMulti-Cores. The speedup of
the index time of an approach on x cores is calculated by

speedup = The index time of the approach with 1 core

The index time of the approach with x cores
.

According to the above equation, when the core number is
1, the speedup is constantly 1; when an approach fails in

7 http://snap.stanford.edu/data/.
8 http://law.di.unimi.it.
9 http://konect.uni-koblenz.de/.

indexing on 1 core within the time limit, its speedup cannot
be derived. Figure 10 shows the index time speedup of PSL,
PSL+ and PSL∗ with the core number varying from 1, 12, 23,
34, to 45 on six networks, DBLP, POK, LJ, FB, WIKI, and SK,
respectively. A near linear speedup has been observed for
all the three approaches along with the increasing number of
cores. The speedup of each approach is relatively stable over
different graphs. On 45 cores, PSL shows, over all datasets, an
average speedup of 30 and a maximum speedup of 32, PSL+
shows average 28 and maximum 31 while PSL∗ shows aver-
age 27 and maximum 31. The index reduction techniques
have little influence on the speedup: the lines of the three
approaches clutter, especially on DBLP. A mild slowdown in
the speedup when the core number gets close to 45 can be
explained by the imbalance resource allocation introduced
by more cores. The index size reduction techniques can be
critical: PSL failed on FB even when 45 cores were engaged,
while PSL∗ removed redundant nodes to achieve an comple-
tion.
Exp 6: Scalability on Index Time. We randomly divided
the nodes of a graph into 5 groups; each group consisted of
1/5 of the nodes. We created 5 graphs, while the i-th test
case is the induced subgraph on the first i node groups. The
experiments were performed on the 5 graphs, respectively.

Figure 11 shows that the index time of PSL∗ increases
almost linearly with the number of nodes of the graph. For
example, the index time is about 48 times on 100% nodes
than on 20% nodes of DBLP and is about 8 times for FB.
For PSL and PSL+, although there is a situation where these
two methods fail to create the index, the index time increases
smoothly when the number of nodes increases. Therefore,
the above results justify the scalability of PSL for index time.
Exp 7: Scalability on Index Size. The setting is the same
as the former experiment. Figure 12 shows that the space
consumption grows smoothly with the graph size for all three
methods. For example, the index space on 100% nodes of
DBLP is about 184.6, 251.2, 182.5 times larger than that on
20% nodes for PSL, PSL+, and PSL∗, respectively. Therefore,
the smooth increase of the index space shows the scalability
of PSL for the index size.
Exp 8: Scalability onQuery Time. Figure 13 shows that the
query time of the proposed approaches grows smoothly with
the graph size. For example, on LJ, the query time on 100%
nodes is about 368.34, 372.92, and 546.26 times larger than
that on 20% nodes for PSL, PSL+, and PSL∗, respectively.
Other graphs show a similar trend. Combining the above
experiments on the scalability test, we draw the conclusion
that the proposed methods all show excellent scalability.

7.2 Test on node ordering

Algorithms. For PSL, we use PSLD to denote PSL whose
order is determined by degrees and PSLB to denote PSLwhose
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Fig. 6 The comparison of the index time on one core

Fig. 7 The comparison of the index time on 45 cores

Fig. 8 The comparison of the index size

Fig. 9 The comparison of the query time

Table 6 The Description of
Added Datasets

Name Dataset n m Type

UK75 UK-2007-058 105,896,555 3,738,733,648 Web Graph

UKOQ UK-20078 133,633,040 5,507,679,822 Web Graph

123



W. Li et al.

(a) (b)

(d) (e)

(c)

(f)

Fig. 10 The effect of core number on the index time

(a) (b)

(d) (e)

(c)

(f)

Fig. 11 The test of scalability for the index time

order is determined by k-betweenness. Furthermore, to test
the effect of removing local minimum set on computing
k-betweenness, we impose different node orders on PSL∗,
which includes the following three methods:

– PSL∗
D: PSL∗ using degrees to determine node order.

– PSL∗
B: PSL∗ using k-betweenness computed by the pool-

based sampling method (Algorithm 5) for ordering.
– PSL∗

I: PSL∗ using k-betweenness computed by the
improved sampling method (Algorithm 6) for ordering.

Datasets. Experiments were performed on 30 real-world
graphs in Table 5. Moreover, to further test the effect of dif-
ferent ordering methods, we provide two additional datasets,

as shown in Table 6. The largest added graph has more than
5.5 billion edges.
Exp9:Degree-basedandBetweenness-basedNodeOrders
on PSL. We study the effect of node orders (using degree and
betweenness) on PSL index sizes. Among them,we obtain the
node orders determined by betweenness in two ways: PSLB
whose order is determined by our proposed k-betweenness
algorithm, and we set the parameter k to 4; and PSLC whose
order is determined by classical betweenness. We use the
method ABRA10 in [38] to estimate the classical between-

10 We choseABRA for two reasons. First, as pointed out in [38], ABRA
outperforms the method of [37]. Second, ABRA can be terminated at
any time during execution, which leads to a fair comparison with our
method. The source code of ABRA is also the code used in the literature
[6] and has been implemented in parallel with OpenMP.
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(a) (b)

(d) (e)

(c)

(f)

Fig. 12 The test of scalability for the index size

(a) (b)

(d) (e)

(c)

(f)

Fig. 13 The test of scalability for the query time

ness values, and its parameters are set according to those in
[38]. For PSLB and PSLC, we stop sampling when the sam-
pling time exceeds the same time threshold. We compared
the index sizes of PSLD, PSLC and PSLB on all graphs where
PSLD can create indexes. The results are shown in Fig. 14.

First, we compare PSLB with PSLD to show that using
betweenness is superior to using degree as the node order.
As can be seen in Fig. 14, the index size of PSLB is always
smaller than that of PSLD, and the index size of PSLB can
be more than five times smaller than that of PSLD on ARAB.
These results show that setting betweenness to node order is
useful for reducing the index size.

Then, we compare PSLB with PSLC to illustrate the neces-
sity of the proposed k-betweenness approximation algorithm.
In 19 out of 24 graphs, the index size of PSLB is smaller than

that of PSLC (by a factor of up to 2.45 on WIKI); on other
graphs, the index size of PSLB is comparable to that of PSLC.
This result illustrates why new betweenness approximation
methods need to be designed for distance labeling: replacing
classical betweenness with k-betweenness leads to a consid-
erable reduction in the index size of PSLB compared to PSLC,
especially for large graphs.
Exp 10: Effect of Node Order on the Index Size of PSL∗.
The primary goal of determining the node order using k-
betweenness is to reduce the index size—on a multiple-core
environment, the failure of labeling methods mainly results
from the unaffordable index size. We compared PSL∗ using
different node ordering methods, where the hop number k is
set to 4, and the sampling time T is set to 3600 s. The effect
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Fig. 14 The comparison of node order degree and betweenness

Fig. 15 The effect of the node order on the index size

of parameters T and k on the index size will be discussed
later, and the results on all 32 graphs are given in Fig. 15.

Figure 15 indicates that replacing degrees (PSL∗
D) with k-

betweenness (PSL∗
B and PSL∗

I) enables the indexing on large
graphs UK75 and UK07. This demonstrates the meaning of
adopting k-betweenness as a node order. Moreover, on the
30 graphs where PSL∗

D finished labeling, the index size of
PSL∗

I is, on average, 1.48 times smaller on average than that
of PSL∗

D, and the size of PSL∗
D is reduced by about 4 times

at most.
We then verify that it is useful to consider the local

minimum set (M(G)) elimination in the computation of k-
betweenness. As shown in Fig. 15, the index size of PSL∗

B

can be sometimes larger than that of PSL∗
D: PSL∗

B’s index
size is 1.22 times and 1.3 times that of PSL∗

D on FB and SK,
respectively. In contrast, the index of PSL∗

I is always smaller
than that of PSL∗

D. Furthermore, the index size of PSL∗
I is, on

average, 1.12 times smaller than that of PSL∗
B, and the size

of PSL∗
B is reduced by more than 1.67 times at most. These

results are encouraging because it shows that taking M(G)

into account can effectively reduce the index size under the
same sampling time.
Exp 11: Effect of Node Order on Query Time of PSL∗.
Figure 16 compares PSL∗

D, PSL∗
B, and PSL∗

I in query time.
On average, PSL∗

B takes 0.91 times as long as PSL∗
D, while

PSL∗
I takes only 1.04 times as long as PSL∗

D. This means
that reducing the size does not affect the query time—PSL∗

B

shortens the query time of PSL∗
D, and PSL∗

I’s query time is
close to that of PSL∗

D.

Exp 12: Effect of Node Order on Index Time of PSL∗.
We show the index time (including one-hour sampling time
for PSL∗

B and PSL∗
I) for different ordering methods, and the

results are given in Fig. 17. On all the graphs, the index time
of PSL∗

B does not exceed the index time of PSL∗
D by more

than 2 hours, while the index time of PSL∗
I does not exceed

the index time of PSL∗
D bymore than 1.5 hours. Note that the

additional overhead in index time is acceptable: on the one
hand, we need time to estimate k-betweenness, and on the
other hand, adopting k-betweenness as the node order does
not significantly improve the index time.

It is also interesting to observe that on some graphs the
index time is reduced when we replace PSL∗

D by PSL∗
I: on

UK, the index time of PSL∗
D is 11986.17 s while the time

is 9599.761 s for PSL∗
I. Furthermore, note that PSL∗

D can-
not index on large graphs such as UK75 and UK07 due to the
exhaustive index size. These results support the idea of adopt-
ing k-betweenness as the node order, provided that index time
can be dramatically reduced in a multi-core environment.
Exp 13: Effect of k on Index Size. We examine the effect
of hop number k on the index size, where k is the parameter
that defines k-betweenness. Since PSL∗

I performs better than
PSL∗

B in reducing the index size, we only present the results
of PSL∗

I. We varied the number k from 2, 3, 4, 5, to 6, and
the results are shown in Fig. 18. Note that the red line in the
figures is the index size when k is set as the diameter of the
graph.

Figure 18 shows that different graphs have different
trends: as k increases, the index size first decreases and then
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Fig. 16 The effect of the node order on the query time

Fig. 17 The effect of the node order on the index time

increases on DBLP, POK, LJ, and WIKI; on FB, the index size
decreases continuously; on SK, the index size first increases
then decreases. The different trends suggest that we adopt k-
betweenness rather than betweenness (when k is infinite) is
desirable: given a limited sampling time, a larger k does not
imply a smaller index. Furthermore, setting k to 4 allows a
reasonably small index size on all graphs, and 4 is the default
hop number for k-betweenness.
Exp 14: Effect of k on Query Time.We examine the effect
of hop number k on the query time, where all experimental
settings are the same as Exp 13. Figure 19 shows that dif-
ferent graphs have different trends: as k increases, the query
time first decreases and then increases on POK, LJ, and FB;
the query time first increases then decreases on WIKI; the
query time fluctuates on DBLP and SK. Also, by compar-
ing with the query time obtained using betweenness (when
k is set to infinity), we find that the query time obtained
using k-betweenness is comparable. This shows that using
k-betweenness as the node order can reduce the index size
without sacrificing the query time.
Exp 15: Effect of Sampling Time T . PSL∗

I adopts a
sampling-based algorithm to approximate k-betweenness.
Instead of giving the total sample size, PSL∗

I provides the
time limit T for the sampling process. To evaluate the effect
of sampling time T on the index size of PSL∗

I, we changed
T from 900, 1800, 3600, 5400, to 7200 s, and the results are
given in Fig. 20.

On all the graphs, the index size does not increase as more
sampling time is given. This is reasonable, as an increasing

T leads to a more accurate estimation of k-betweenness. Fur-
thermore, for some graphs, such as DBLP and FB, the index
size reduce smoothly after one hour, which explains why
3600 s is the default sampling time for PSL∗

I. However, on
large graphs such as LJ and SK, the index size keeps decreas-
ing. This verifies the benefits of our method in handling large
graphs when more sampling time is given.
Exp 16: Effect of Sampling Time T on Query Time. We
examine the effect of sampling time T on the query time,
where all experimental settings are the same as the Exp 15.
Figure 21 shows that the difference in query time across all
graphs is insignificant when T is changed: despite the differ-
ent trends in query time on various graphs, the ratio between
themaximumandminimumquery timeon all graphs does not
exceed2.83. This result further highlights that k-betweenness
as node order can guarantee good query time while reducing
index size.
Exp 17: Overall Index Size Reduction Ratio.

After the reduction of index time using multi-core paral-
lelization, the study of index size reduction becomes impor-
tant. This paper proposes two ways in reducing the index
size of PSLD: (i) index compression by removing redundant
information (e.g., equivalent relationship reduction and local
minimum set elimination); and (ii) setting the node order
using k-betweenness. ThefinalPSL∗

I combines the above two
reduction techniques. To further highlight the significance of
size reduction, we compared the index size between PSLD
and PSL∗

I. We use the metric ratio to show the percentage
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(a) (b)

(d) (e)

(c)

(f)

Fig. 18 The effect of the hop number k on the index size (PSL∗
I)

(a) (b)

(d) (e)

(c)

(f)

Fig. 19 The effect of the hop number k on the query time

(a) (b)

(d) (e)

(c)

(f)

Fig. 20 The effect of the sampling time T on the index size (PSL∗
I)
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(a) (b)

(d) (e)

(c)

(f)

Fig. 21 The effect of sampling time T on the query time

Table 7 Overall index size
reduction ratio

Name PSLD PSL∗
I Ratio Name PSLD PSL∗

I Ratio
(MB) (MB) % (MB) (MB) %

DELI 364.05 110.474 69.65 GP 355.24 107.495 69.74

LAST 1997.52 314.168 84.27 GOOG 589.11 196.834 66.59

AMAZ 9025.18 4150.954 54.01 DIGG 1178.41 278.791 76.34

FLIX 11444.23 657.548 94.25 TREC 2208.96 300.507 86.40

YOUT 2141.51 919.85 57.05 SKIT 2209.91 691.007 68.73

TWIT 582.58 414.14 28.91 HUDO 3738.98 1442.207 61.43

PET 519.32 305.785 41.12 BAID 4493.61 1717.496 61.78

TPD 1783.19 809.296 54.62 DBLP 50996.04 18300.504 64.11

TOPC 2365.64 1557.537 34.16 POK 44414.19 23996.3 45.97

FLIC 2839.96 845.43 70.23 HOST 8005.39 2230.982 72.13

STAC 7495.68 2686.053 64.17 LJ 94950.66 33542.286 64.67

INDO 17731.95 1581.035 91.08 WIKI 45447.10 15302.388 66.33

ARAB 146394.20 9587.213 93.45 SK 190216.16 42533.59 77.64

of index size reduction thatPSL∗
I achieves compared toPSLD,

where ratio = 100%− Index size of PSL∗
I

Index size of PSLD
×100%. Table 7 lists

the ratio on all graphs that PSLD can complete the labeling
process.

Table 7 shows that PSL∗
I can compress PSLD’s index size

by 94.25% on FLIX—PSLD’s index size is decreased by more
than an order of magnitude. Furthermore, PSL∗

I can build the
index on large graphs where PSLD fails, demonstrating the
necessity in using index reduction techniques for distance
labeling even in a multi-core environment.

8 Conclusions

In this paper,we propose a novel parallelized labeling scheme
for distance queries on small-world networks. Our method

accelerates the index construction by concurrently creating
labels with the same label distances. Moreover, the index
size is reduced by removing redundant nodes from the graph
and removing labels of local minimum sets from the index.
Scalable approximation algorithms for k-betweenness com-
putation is proposed, so that k-betweenness can be used
as a node order to further reduce the index size. Extensive
experimental results illustrate the superior efficiency of our
approach. In particular, our approach enables the building of
the index for networks at billion scales. Experimental results
verify the near-linear speedup of our algorithms in a multi-
core environment.
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A Proof of Lemma 1

According to triangle inequality, for any node u ∈ V ,
dist(s, u)+dist(u, t) ≥ dist(s, t). For a node u′ on a shortest
path from s to t , dist(s, t) = dist(s, u′) + dist(u′, t). Since
C(s) ∩ C(t) shares a node with a shortest path from s to t ,
minv∈C(s)∩C(t) dist(s, v) + dist(v, t) = dist(s, t).

B Extend PSL to directed graphs

For directed graphs, each node v ∈ V is associated with
a set of hub nodes CIN(v), where w ∈ CIN(v) can reach v

and another set of hub nodes COUT(v), where v can reach
w ∈ COUT(v). Combined with the distance, we obtain two
labels L IN(v) = {(u, dist(u, v))|u ∈ CIN(v)} and LOUT(v) =
{(u, dist(v, u))|u ∈ COUT(v)} for the node v. To compute
the labels LOUT(v), we run PSL on G; to compute L IN(v),
we reverse the edge direction of graph and run PSL on the
reversed graph. To process the distance query q(s, t), we
make use ofQuery(s, t, L) defined in the following equation.

Query(s, t, L) = minu∈COUT(s)∩CIN(t)(dist(s, u) + dist(u, t)).
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